首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the early juveniles of Ciona intestinalis, primordial germ cells arise on the degenerated mass of the resorbed tadpole tail, and assemble to form a discrete gonad rudiment. The present study elucidated the morphological sequences during differentiation of the gonad rudiment into the testis and ovary. In 11- to 12-day juveniles, the gonad rudiment, an elongate sac, divided into the testicular and ovarian rudiments. The testicular rudiment separated as a round vesicle from the thickened wall of the elongate sac. The original sac, after separation of the round vesicle, developed into the ovary. In the testicular rudiment, germ cells formed a continuous central mass without association of somatic cells, while in the ovarian rudiment, each germ cell was associated with somatic cells within the epithelium composing the wall of the rudiment. In 13- to 15-day juveniles the testicular rudiment changed into branched tubes ending in club-shaped follicles. Cells characterized by many flattened cisternae of rough endoplasmic reticulum (distal cells) constituted the distal wall of each follicle. Spermatogenic cells were freely present in the follicular lumen, but the largest spermatogonia were in contact with the distal cells. Both in the testicular and ovarian rudiments, germ cells entered meiosis in 18-day juveniles. A novel body (periesophageal body) was found just beneath the ventral margin of the esophageal opening. It comprised irregular follicles made up of one cell type whose cytoplasm, filled with round vesicles and Golgi complexes, was suggestive of an endocrine function. Fragments derived from the periesophageal body were present around the developing ovary.  相似文献   

2.
The origin of germ cells in the ascidian is still unknown. Previously, we cloned a vasa homologue (CiVH) of Ciona intestinalis from the cDNA library of ovarian tissue by polymerase chain reaction and showed that its expression was specific to germ cells in adult and juvenile gonads. In the present study, we prepared a monoclonal antibody against CiVH protein and traced the staining for this antibody from the middle tailbud stage to young adulthood. Results showed that positive cells are present in the endodermal strand in middle tailbud embryos and larvae. When the larval tail was absorbed into the trunk during metamorphosis, the CiVH-positive cells migrated from the debris of the tail into the developing gonad rudiment, and appeared to give rise to a primordial germ cell (PGC) in the young juvenile. The testis rudiment separated from the gonad rudiment, the remainder of which differentiated into the ovary. PGCs of the testis rudiment and the ovary rudiment differentiated into spermatogenic and oogenic cells, respectively. When the larval tail containing the antibody-positive cells was removed, the juveniles did not contain any CiVH-positive cells after metamorphosis, indicating that the PGCs in the juvenile originated from part of the larval tail. However, even in such juveniles, positive cells newly appeared in the gonad rudiment at a later stage. This observation suggests that a compensatory mechanism regulates germline formation in C. intestinalis.  相似文献   

3.
4.
5.
In most animal species, germ cells require intimate contact with specialized somatic cells in the gonad for their proper development. We have analyzed the establishment of germ cell-soma interaction during embryonic gonad formation in Drosophila melanogaster, and find that somatic cells undergo dramatic changes in cell shape and individually ensheath germ cells as the gonad coalesces. Germ cell ensheathment is independent of other aspects of gonad formation, indicating that separate morphogenic processes are at work during gonadogenesis. The cell-cell adhesion molecule Drosophila E-cadherin is essential both for germ cell ensheathment and gonad compaction, and is upregulated in the somatic gonad at the time of gonad formation. Our data indicate that differential cell adhesion contributes to cell sorting and the formation of proper gonad architecture. In addition, we find that Fear of Intimacy, a novel transmembrane protein, is also required for both germ cell ensheathment and gonad compaction. E-cadherin expression in the gonad is dramatically decreased in fear of intimacy mutants, indicating that Fear of Intimacy may be a regulator of E-cadherin expression or function.  相似文献   

6.
After hatching, the germ line progenitor cells in C. elegans begin to divide mitotically; later, some of the germ line cells enter meiosis and differentiate into gametes. In the adult, mitotic germ cells, or stem cells, are found at one end (the distal end) and meiotic cells occupy the rest of the elongate gonad. Removal of two somatic gonadal cells, the distal tip cells, by laser microsurgery has a dramatic effect on germ cell development. In either sex, this operation leads to the arrest of mitosis and the initiation of meiosis in germ cells. The function of the distal tip cell in the intact animal appears to be the inhibition of meiosis (or stimulation of mitosis) in nearby germ cells. During development, this permits growth and, in the adult, it maintains the germ line stem cell population. A change in the position of the distal tip cell in the gonad at an early point in development is correlated with a change in the axial polarity of the germ line tissue. This suggests that the localization of the distal tip cell's inhibitory activity at the distal end of the gonad establishes the axial polarity of the germ line tissue in the intact animal.  相似文献   

7.
Gonad development and sex differentiation from embryos to 594‐day‐old individuals were investigated in farmed Acipenser naccarii using light and transmission electron microscopy. The migrating primordial germ cells first appear along the dorsal wall of the body cavity in embryos 1.5 days before hatching. The gonadal ridge, containing a few primary primordial germ cells (PGC‐1) surrounded by enveloping cells, appears in 16‐day‐old larvae. At 60 days, the undifferentiated gonad is lamellar and PGC‐1 multiply, producing PGC‐2. In 105‐day‐old juveniles, a distinct germinal area with advanced PGC‐2 appears on the lateral side near the mesogonium and the first blood vessels are visible. At 180 days, putative ovaries with a notched gonadal epithelium and putative testes with a smooth one appear, together with adipose tissue on the distal side. In 210‐day‐old juveniles, active proliferation of germ cells begins in the putative ovaries, whereas putative testes still contain only a few germ cells. The onset of meiosis and reorganization of stromal tissue occurs in ovaries of 292‐day‐old individuals. Ovaries with developed lamellae enclosing early oocyte clusters and follicles with perinucleolar oocytes occur at 594 days. Meiotic stages are never found, even in anastomozing tubular testes of 594‐day‐old individuals. Steroid producing cells are detected in the undifferentiated gonad and in the differentiated ones of both sexes. Anatomical differentiation of the gonad precedes cytological differentiation and female differentiation largely precedes that of the male. Gonad development and differentiation are also associated with structural changes of connective tissue, viz. collagen‐rich areas are massive in developing testes and reduced in ovaries. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
The structure of the gonad of the European eel (Anguilla anguilla [L.]), an “undifferentiated” gonochoristic teleost, was investigated by transmission electron microscopy from 6–8 cm elvers to 22 cm yellow eels with juvenile hermaphroditic gonads. The pear-shaped gonads of 6–8 cm elvers assume, in 12–15 cm eels, a lamellar shape and enlarge by migration of germ cells, which we refer to as primary primordial germ cells. In the gonads of ∼ 16 cm eels, the primary primordial germ cells multiply, giving rise to clusters of germ cells that have ultrastructural characteristics of the primary primordial germ cells but show giant mitochondria, enlarged Golgi complexes, and round bodies not limited by membranes. We refer to these as secondary primordial germ cells. In 16–18 cm eels, syncytial clones of oogonia interconnected by cytoplasmic bridges are also observed. In 18–22-cm-long eels, the gonads contain primordial germ cells, oogonial clones, early oocyte cysts, single oocytes in early growth stages, and primary spermatogonia. Such germ cells are present in the same cross section where they are either intermingled or are in areas of predominantly female germ cells close to areas with predominantly male germ cells. These gonads are juvenile hermaphroditic and should be considered ambisexual because in larger eels they differentiate either into an ovary or into a testis. Somatic cells always envelop the germ cells following their migration into the gonad. These somatic cells first show similar ultrastructural features and then differentiate either into early Sertoli cells investing spermatogonia, or into early follicular (granulosa) cells investing the early previtellogenic oocytes. In eels ∼ 14 cm long, primitive steroid-producing cells also migrate into the gonad. In the ambisexual gonad they differentiate either into immature Leydig cells in the male areas, or into early special cells of the theca in the female areas. Nerve fibers are joined to the steroid-producing cells. Gonad development and differentiation are also associated with structural changes of the connective tissue characterized by the progressive appearance and deposition of collagen fibrils first in the mesogonadium, then in the gonad vascular region, and then in the germinal region. The collagen-rich areas are massive in the male areas and reduced in the female ones. J. Morphol. 231:195–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.  相似文献   

10.
The left gonad from female chick embryos at 4–12 days of incubation was cultured in vitro as pieces of intact gonad, pieces of isolated cortex, and groups of pure germ cells. All cultures were maintained for a time equal to 17 days in ovo. At the end of the culture period, a cytological and quantitative study was made on the germ cells.The results show that some germ cells in pieces of intact 6-day gonad and pieces of 6-day cortex complete their normal developmental sequence and enter zygotene. This shows that the factors that control the differentiation of the germ cells reside in the cortex of the gonad and their expression does not depend upon the pituitary and the medullary estrogens after 6 days of incubation.Germ cells that are cultured as isolated cells do not attach to the tissue culture substrate, do not divide mitotically, and do not enter zygotene. Evidence is presented that suggests 12-day germ cells do enter zygotene when cultured with pieces of 12-day cortex. These data suggest the differentiation of the female germ cells is regulated by the somatic cells of the cortex.  相似文献   

11.
The establishment and sexual differentiation of the gonads of horse embryos were studied using high-resolution techniques. The most dramatic observation is the early cytodifferentiation of the somatic cells into steroidogenic cells which takes place before sexual differentiation of the gonads. A unique morphogenetic pattern is established during this process: the seminiferous cords of the testis are completely segregated from the steroidogenic tissue by a basal lamina, while in the medulla of the ovary, steroidogenic cells differentiate inside the epithelial cords which contain germ cells. This early difference in the topographical distribution of steroidogenic cells favours the hypothesis that the interactions between somatic and germ cells vary with the genetic sex. The possibility of finding qualitative differences in steroidogenesis before and during sexual differentiation of the gonad suggests the horse gonad as a good model for the study of the role of the steroid hormones in the sexual differentiation of the mammalian gonad.  相似文献   

12.
The postembryonic development of the gonad in the hermaphroditic appendicularian O. gracilis was studied using transmission electron microscopy. The primordial germ cells were detected first in 10-h-old larvae and represent migrating primordial germ syncytium (mPGS) localized in the hemocoel of the tail/trunk junction and several haemocoel areas of the digestive compartment. The mPGS consisted of primordial germ nuclei (PGN) 2 μm in diameter, and elongate somatic-line nuclei 1.8 μm in diameter. In 12.5-h-old juveniles the gonad primordium 40 × 90 μm in size, was separated by a narrow space of haemocoel between the gut and the epidermis of the reproductive compartment. The gonad primordium consisted of the central syncytial part of primordial germ nuclei (PGN), enclosing a single layer of somatic epithelium. In 3-day-old juveniles, the gonad was differentiated into testis and ovary. The testis, 400 × 550 μm in size, is a syncytium of spermatogonial nuclei, covered by a single layer of somatic epithelium. The ovaries, 350 × 850 μm in size, consist of a syncytium with nurse nuclei and meiotic nuclei. The hermaphroditic gonad originates from extragonadal mPGS. Early gonadogenesis in appendicularians has ultrastructural features in common with early gonadogenesis in ascidians.  相似文献   

13.
The morphogenesis of gonads in Bufo bufo tadpoles was studied, and ultrastructural differences between sexes were identified. All specimens analyzed initially developed gonads made up of a peripheral fertile layer (cortex) surrounding a small primary cavity. Subsequently a central layer of somatic cells (medulla) developed. Both layers were separated by two uninterrupted basal laminae between which a vestige of the primary cavity persisted. During female differentiation, the peripheral layer continued to be the fertile layer. In males, the central layer blended into the peripheral layer and the basal laminae disappeared. The somatic cells of the central layer came into direct contact with the germ cells; this did not occur in females. Testicular differentiation continued with the migration of germ cells towards the center of the gonad. The somatic elements surrounding the germ cells appeared to play an active role in their transfer to the center of the gonad. The peripheral layer shrank and became sterile. Two basal laminae then re-formed to separate the fertile central layer from the peripheral sterile one. Germ cells have always been thought to perform a passive role in sex differentiation in amphibians. Following the generally accepted "symmetric model", the mechanism of gonad development is symmetrical, with cortical somatic cells determining ovarian differentiation and medullary somatic cells determining testicular differentiation. In contrast, we found that sex differentiation follows an "asymmetric" pattern in which germ cells tend primarily toward a female differentiation and male differentiation depends on a secondary interaction between germ cells and medullary somatic cells.  相似文献   

14.
Cell-cell signaling and adhesion are critical for establishing tissue architecture during development and for maintaining tissue architecture and function in the adult. Defects in adhesion and signaling can result in mislocalization of cells, uncontrolled proliferation and improper differentiation, leading to tissue overgrowth, tumor formation, and cancer metastasis. An important example is found in the germline. Germ cells that are not incorporated into the gonad exhibit a greater propensity for forming germ cell tumors, and defects in germline development can reduce fertility. While much attention is given to germ cells, their development into functional gametes depends upon somatic gonadal cells. The study of model organisms has provided great insights into how somatic gonadal cells are specified, the molecular mechanisms that regulate gonad morphogenesis, and the role of germline-soma communication in the establishment and maintenance of the germline stem cell niche. This work will be discussed in the context of Drosophila melanogaster.  相似文献   

15.
The single gonad anlage in the first-instar larva of Anthonomus pomorum (L.) (Coleoptera: Curculionidae) has a form of a solid cylinder enclosed by a basal lamina, covered by the peritoneal sheath. The basal lamina lies on the gonad envelope made of a layer of flat somatic cells that surrounds a group of dozen or so germ cells and some inner somatic cells. In the second-instar, the gonad anlage is larger and divided into 2 parts connected with a band of somatic cells. Within this cellular band, the lumen of the future gonadal ducts (lateral oviducts or seminal ducts) appear. As a consequence of numerous mitoses, the gonad grows and splits into 2 parts. Each part will form one ovariole in the female or one testicular follicle in the male. In the third-instar larva, the gonocytes are gathered into several groups that are isolated by thin extensions of the somatic cells. Each part of the freshly divided gonad is connected to a tube of a developing gonadal duct. The tube joins the 2 parts of the gonad and extends towards the end of the abdomen. At the end of the third instar, the mitoses of the gonocytes do not end with complete cytokinesis; as a result, they form clusters of cells connected by the intercellular bridges. The fusomal material that fills up the individual bridges joins into one structure, forming the polyfusome.  相似文献   

16.
The differentiation of embryonic chick gonads lacking germ cells was compared to that of normal chick gonads to determine whether the somatic elements of sterile avian gonads will undergo normal sexual differentiation. Primordial germ cells were removed by surgical excision of anterior germinal crescent from early embryos, Hamburger and Hamilton stages 6–11. Surgically treated and control embryos were sacrificed at 6, 15, and 20 days of incubation, and their gonads were studied histologically. Analysis of differentiation was based on morphological criteria at the cellular, tissue, and organ levels. In both male and female embryos, the somatic elements of the gonads differentiated normally in the absence of germ cells. The significance of these results for understanding the controls of differentiation of both the somatic gonad and the germ cells in birds is discussed and correlated with similar results in mammals.  相似文献   

17.
Development of ovaries in bovine fetuses   总被引:1,自引:0,他引:1  
The growth of ovaries, development of germ cells, formation of sex cords, folliculogenesis and dependence of these processes on the gonad morphogenesis stages were studied on 68 embryos and foetuses at the age of 1.5 to 9 months. Sex differentiation of ovaries was shown to take place in 1.5 month old embryo. The cords of connective tissue's cortical stroma appear also in 1.5 month old embryo, they develop in the dorsoventral direction and reach the gonad's covering epithelium in 6 month old foetuses. The formation of the medulla rudiment starts in 1.5 month old embryo when the gonad is separated from mesonephros and connected with it via the ovary gate. In 4 month old foetuses the ovary net transforms into a stellate structure. Important morphogenetic processes, such as the development of the ovary somatic elements, entry of the oocytes into meiotic prophase, formation of the sex cords and folliculogenesis, develop in the dorsoventral direction Germ cells in 9 month old foetuses are enclosed into primordial or, growing follicles.  相似文献   

18.
Moving towards the next generation.   总被引:6,自引:0,他引:6  
In most organisms, primordial germ cells are set aside from the cells of the body early in development. To form an embryonic gonad, germ cells often have to migrate along complex routes through and along diverse tissues until they reach the somatic part of the gonad. Recent advances have been made in the genetic analysis of these early stages of germ line development. Here we review findings from Drosophila, zebrafish, and mouse; each organism provides unique insight into the mechanisms that determine germ cell fate and the cues that may guide their migration.  相似文献   

19.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

20.
Gonadal cell suspensions were made from bovine fetuses of 35–55-, 56–80-, and 80–130-day age groups corresponding to the periods predominated by primordial germ cells (PGCs), oogonia, and meiotic cells, respectively. Germ cells identified on morphological criteria prior to their isolation from suspensions were compared histochemically and morphologically with cells in cryosections, impression smears, and semithin sections of similar gonads. Oocytes were distinguished by their chromosomal configurations in cell spreads. In suspensions from 35–55-day fetuses, cells considered to be PGCs stood out by their size, large nucleus, intracytoplasmic vesicles, and occasional blebbing. The somatic cells were smaller and contained little cytoplasm and few vesicles. In bovine gonads, in contrast to murine gonads, alkaline phosphatase (AP) activity was not specific enough to identify germ cells once they had entered the gonad. In ovaries from the 56–80-day age group, cells similar to PGCs, but slightly larger and with more cytoplasmic vesicles, were identified as oogonia. The cytoplasmic vesicles stained positively for lipid. In ovaries of 80–130-day fetuses, oogonia, oocytes, degenerating germ cells, and multinucleate germ cells were recognized. Degenerating germ cells exhibited a variety of morphological characteristics and were consistently positive for acid-phosphatase activity. Binucleate germ cells appeared around day 85 of gestation, while multinucleate germ cells were seen from day 95. It was concluded that bovine mitotic germ cells can be isolated from gonadal cell suspensions and that the best time to recover them is between 50 and 70 days of gestation. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号