首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Guinea pig cerebral slices were incubated in oxygenated Krebs-Ringer bicarbonate glucose saline for periods of 1 s to 60 min, and their swelling and Na+ and K+ cone were measured. The swelling was at the rate of 8 per cent for the 1st min, and 0·8 per cent for the next 29 min; it fell significantly during the subsequent 30 min (P= 0·05). The Na+ and K+ concn in the tissue fluctuated during the 1st min of incubation, but the Na+ concn had risen to a mean of 108 mm after 1 min incubation and the K+ concn had fallen to a mean of 52 mm by 3 min. The concentrations of these cations did not change significantly after these times. Cerebral slices were also incubated for 30 min in isotonic media modified such that Na+, + K+, Na++ choline+, or K++ choline+ always added up to 150 mm . It was found that about half of the swelling (20-25 per cent) was independent of the Na+ or K+ concn and a further 20-25 per cent of the swelling varied with the cations only if Na+ and K+ were both present and was a function of the K+ concn in the medium (0·15 per cent m-mol). The Na+ concn in the tissue was a mean 8·4 mm after incubation in a Na+-free medium and 7·1 mm in K+ after incubation in a K+-free medium. Cerebral slices in the presence of Na++ K+ excluded one molecule of Na+ for every four molecules in the incubating medium; they accumulated K+ from the medium until the concn in the medium exceeded 130 mm .  相似文献   

2.
—(1) Cerebral slices were incubated in Ca2+-free media or in media which contained 2.8 mm -Ca2+. Omission of Ca2+ brought about a drop in creatine phosphate content of 28 per cent, as well as a drop of 3–10 per cent in non-inulin K+ content. There was little change in content of 10-min phosphate or of non-inulin Na+. (2) Ouabain in concentrations of to M increased the loss of K+ from the slice and caused a rise in Na+ content. The changes were most marked in Ca2+-free media. Creatine phosphate levels were depressed by ouabain both in the presence or absence of Ca2+. In the absence of Ca2+, the lowering of phosphocreatine did not occur until significant shifts in K+ had taken place. In contrast, slices incubated in Ca2+-containing media lost creatine phosphate and K+ at about the same rate. (3) When ouabain and labelled phosphate were added simultaneously, there was little difference in the rate of incorporation of label into creatine phosphate in media which differed in Ca2+ concentration. However, incorporation of azP-labelled phosphate into creatine phosphate was decreased by 30–40 per cent in media which lacked Ca2+ when ouabain was added 15 min prior to the labelled phosphate. This change was not observed when the media contained Ca2+. (4) Ouabain did not affect oxidative phosphorylation or respiratory control when added directly to bovine brain mitochondrial preparations. (5) The results suggest that the previously observed depression of respiration brought about by ouabain in Ca2+-deficient media is not a good indicator of the proportion of the cell's metabolism used for active cation transport. Under these conditions, the inhibition of cation transport is accompanied by a drop in slice content of high-energy phosphate which may represent a secondary effect of ouabain, or of cytoplasmic alterations brought about by ouabain, on energy-producing processes.  相似文献   

3.
—Rat cerebral slices were incubated in oxygenated Krebs-Ringer bicarbonate glucose saline, and the uptake of Li+ was measured after periods of 15 s to 5 min. Saturation was not seen within the concentrations of Li+ employed (0·5-2·0 mm ). The half-time of the uptake was 7·9 min. At steady state, after 1 h incubation, the concentration of Li+ in the tissue was linearly related to that of the medium (0·5-1·5 mm Li+) with a concentration ratio of 1·29–1·66. The concentrations of K+ and Na+ in the slices incubated without Li+ were found to be (μmol/g incubated wt, mean ±s.d .) 63·8 ± 9·6 and 96·2 ± 7·8 respectively (n = 28). In the presence of media with 1·5 mm -Li+, the K+ and Na+ in the slices were 56·2 ± 8·8 and 101·0 ± 7·7 respectively (n = 37). The concentration of Li+ in the slices, after 1 h incubation, increased in a non linear way as the concentration of K+ in the medium was decreased within a range of 0·10 mm -K+. In the absence of K+ in the medium the uptake of Li+ was approx 50% higher than in the presence of 4·9 mm -K+. There was an inverse linear relationship between the concentration of Li+ in the slices and that of Ca2+ in the medium within the range of 0-5·2 mm (-0·13 mm -Li+/mm Ca2+). The concentration of Li+ in the slices increased by approx 10% when the Mg2+ in the medium was increased from 1·3 mm to 2·6 mm . Changes of the concentration of Na+ between 120 mm and 170 mm in the medium had no significant effect on the Li+ uptake.  相似文献   

4.
Slicing and incubating rat liver caused a rapid Ca2+-independent exchange of K+ for Na+, followed by a Ca2+-dependent recovery. Freshly cut slices washed for 10 min in a Ca2+ medium containing equal concentrations of Na+ and K+ showed little replacement of K+ by Na+ during subsequent incubation in a normal medium. Changes in medium Ca2+ caused immediate changes in slice Na+ and K+, before any substantial change in slice Ca2+ and without altering gradients responsible for passive transfers of Na+ and K+. Ca2+ did not influence an ouabain-sensitive Na+ pump. It also appeared unlikely that Ca2+ was required for an ouabain-insensitive Na+ pump or for maintenance of intracellular structures concerned with K+ sorption, even if these mechanisms existed in the slices. Instead Ca2+ seemed to maintain the cell membrane relatively impermeable to Na+ and K+. An ouabain-sensitive Na+ pump not normally dependent on oxygen supply to the cells appeared to alter its activity according to the work required of it. Control of slice water content could not be attributed to the activity of this pump.  相似文献   

5.
Abstract— It has been reported that the release of GABA by high K+ is Ca2+-dependent while release induced by veratridine or electrical stimulation has been frequently found to be independent of Ca2+. To see the source of Ca2+-dependent and independent release of GABA, cortical slices which had accumulated [3H]GABA were exposed to 50 mm -K+ or 50 μm -veratridine for 48min. In the presence of Ca2+ the 2 agents released approx the same amount of [3H]GABA but tetrodotoxin (TTX) abolished release induced only by veratridine, while omission of Ca2+ reduced release induced only by 50mm -K+. Pre-exposure of the slices for 48min to 50mm -K+ in the presence of Ca2+ reduced the second release by 50mm -K+ by 77% and that by veratridine by 74%, suggesting that in the presence of Ca2+ the 2 depolarizing agents release [3H]GABA from the same pool. Pre-exposure to 50mm -K+ in the absence of Ca2+ reduced the second release by 50mm -K+ or by veratridine only by 37 and 27% respectively, indicating that most of the reduction in release was the result of a depletion of releasable [3H]GABA stores. The second exposure to 50mm -K+ in the absence of Ca2+ reduced the evoked release further, while exposure to veratridine in the absence of Ca2+, after depletion of the stores, enhanced release 2.7 times. Electrical stimulation (64 Hz, 2 ms, 40 mA, alternating polarity) during 24min in the presence of Ca” caused an initial 5-fold increase in efflux, which declined subsequently. In the absence of Ca2+, instead of a rapid increase, a slow but smaller increase in the efflux of [3H]GABA was found. TTX almost completely abolished the electrically evoked increase in release. Pre-treatment with 50mm -K+ reduced the electrically evoked release by 94% but electrical stimulation in the absence of Ca2+ after depletion of releasable stores doubled this release. Results suggest that in the presence of Ca2+, high K+, veratridine and electrical stimulation release [3H]GABA from the same Ca2+-dependent store, but in the absence of Ca2+ veratridine and electrical stimulation enhance the release from a Ca2+-independent store, probably as a result of an increased influx of Na+.  相似文献   

6.
—Adenine nucleotides of guinea-pig cerebral cortical slices were labelled during a 40 min incubation with [14C]adenine. Subsequent incubation of cortical slices with depolarizing agents, such as veratridine, ouabain, batrachotoxin and high concentrations of potassium ions, or with certain psychotropic drugs such as chlorpromazine, chlorimipramine or prenylamine resulted in a reduction in both endogenous and radioactive ATP, accompanied by a marked increase in levels of both endogenous and radioactive cyclic AMP. Reduction of ATP levels during incubation with depolarizing agents, such as veratridine, is probably associated with increased activity of membranal Na+-K+-activated ATPase, while the reduction elicited by psychotropic drugs is proposed to be due to inhibition of mitochondrial synthesis of ATP. With both classes of compounds reduction of ATP levels results in enhanced formation and efflux of adenosine which stimulates formation of cyclic AMP from intracellular ATP in the compartments of brain slices which contain the cyclic AMP-generating systems. Certain classical metabolic inhibitors such as 2,4-dinitrophenol, azide, 1,2-naphthoquinone-8-sulfonate and cyanide also reduce ATP levels and in the case of 2,4-dinitrophenol, cyanide, and azide elicit small but significant accumulations of cyclic AMP. With certain metabolic inhibitors reduction of ATP within the cyclic AMP generating compartments would appear to prevent or reduce the accumulation of cyclic AMP elicited by amines, adenosine or veratridine.  相似文献   

7.
Studies on swelling and fluid compartmentation have been carried out in vitro on incubated slices of cerebral cortex from kittens 1.5-120 days post-natal age and on incubated sections of corpus callosum and slices of liver and kidney cortex from adult cats. The findings have been compared with analogous data for incubated slices of adult cat cerebral cortex, studied under identical conditions (Bourke and Tower , 1966a, b), in order to identify the probable morphological correlates of fluid and electrolyte distribution. Incubated cortical slices from neonatal (1.5-4-day-old) kittens exhibit none of the relevant characteristics of slices from adult cerebral cortex. By 1 month post-natal age, K+-dependent swelling of slices becomes demonstrable, and the K+ and Na+ contents of slices approximate adult levels. Both these developments coincide with the morphological and physiological maturation of cortical neurons. At 3 months post-natal age, slice swelling accessible to C1? but not to sucrose becomes observable and the dependence of sucrose space size on time, during incubation, of solute addition becomes demonstrable. Both these developments follow completion of axonal myelination in the cortex but coincide with the period of cortical glial cell proliferation. Incubated sections of corpus callosum from adult cats exhibit none of the relevant characteristics observed for cortical slices under identical conditions. Tissue swelling is minimal and uninfluenced by K+ concentrations of incubation media. Tissue fluid spaces accessible to sucrose are approximately twice the size of spaces accessible to inulin. In general, qualitatively similar results have been obtained for incubated slices of cat liver or kidney cortex or for incubated sections of rat diaphragm under the same conditions. A behaviour for glial cells (? astrocytes) in cerebral cortex under such in vitro conditions distinctly different from behaviour of subcortical glial cells is suggested.  相似文献   

8.
The increase in the release of acetylcholine (ACh) from cortical slices of rat brain elicited by the depolarizing agents, ouabain and tityustoxin (TsTX) was compared in the presence of tetrodotoxin, an inhibitor of Na+ transport and of ethyleneglycol tetraacetic acid, a specific chelator of Ca2+. TsTX stimulated the release of ACh independently of K1 but required both Na+ and Ca2+. Unlike ouabain, TsTX failed to inhibit the Na+, K+ -ATPase of rat brain homogenates. The uptake of 24Na+ and of 45Ca2+ by the slices was significantly enhanced by TsTX over the entire incubation period during which this process was compared to TsTX-free controls. A hypothesis of TsTX action is proposed which differs from that necessary to explain the ACh releasing effect of ouabain.  相似文献   

9.
Movements of calcium and other cations in isolated cerebral tissues   总被引:5,自引:4,他引:1  
Abstract— Slices of guinea pig cerebral cortex were incubated in bicarbonate- or trisbuffered media. Influx of 45Ca2 +, 54Mn2 +, 133Ba2+ or 90Sr2+ was determined at intervals following addition of the cardiac glycoside, ouabain, to the medium. After incubation for 30 min in the presence of 45Ca2+ and in the absence of ouabain, about 40 per cent of the slice calcium became labelled. Ouabain (01 I″M) markedly increased 45Ca2 + content, as well as the content of unlabelled Ca2 +. Mg2+ and Na+ levels also rose while K+ content dropped at a more rapid rate. Ouabain also brought about increased uptake of 90Sr2+, 133Ba2 + and 54Mn2 +. Lowering the Na+ content of the media prevented the effects of ouabain and brought about an increase in calcium content of brain slices. Addition of 2,4-dinitrophenol (01 mM) or iodoacetate (1 miu) had slight or moderate effects on 45Ca2+ uptake. The data are most compatible with the presence in cerebral tissue of a sodium-calcium exchange process.  相似文献   

10.
Abstract— Glucose and glycogen levels in the mouse cerebral cortex in vivo were studied after recovery from methionine sulphoximine seizures. The animals appeared normal 24 h after methionine sulphoximine administration but both glucose and glycogen still persisted at higher levels 72 h after injection (by 64 and 275 per cent, respectively). When seizures were prevented by methionine, the increase in glucose and glycogen at the longer time intervals was significantly smaller than in animals treated with methionine sulphoximine only; glucose reached normal values at 48 or 72 h; the accumulation of glycogen was reduced by about three to five times, but after 72 h the levels were still significantly higher than in control animals (67 or 32 per cent increase, depending on the administered dose of methionine). In contrast to the considerable accumulation of glycogen after administration of methionine sulphoximine in vivo, it had no effect on the level of glycogen in brain cortex slices in vitro. After 3 h incubation in the absence of methionine sulphoximine, glycogen was resynthesized to a level of about 4 μmol/g wet tissue and this value was not significantly affected by the presence of various concentrations of methionine sulphoximine in the incubation medium (10-5 to 10-2 M). The total (a+b forms) phosphorylase activity of mouse cerebral cortex in vivo after methionine sulphoximine administration was not affected. The fraction of active phosphorylase was reduced by about 50 per cent at the time of seizures. When seizures were prevented by methionine, the decrease in active phosphorylase was also completely prevented. In the preconvulsive period (1-2 h) and after recovery from the seizures (48 h after methionine sulphoximine administration) active phosphorylase was normal. The possible mechanisms involved in the increased accumulation of glycogen after methionine sulphoximine administration are discussed.  相似文献   

11.
Abstract— The total mixed proteins (excluding proteolipids) were isolated from cat cerebral cortex and subjected to acid and enzymic hydrolyses. Analyses on the hydrolysates were carried out by specific enzymic procedures to determine the glutamyl, glutaminyl, aspartyl and asparaginyl composition. The content of total glutamyl and total aspartyl residues was the same in all types of protein samples, with average values of 78 and 58 /miol/100 mg of protein, respectively. In biopsy samples approximately 45 per cent of each total was in the amide form. Preparation of slices of cerebral cortex for incubation was associated with deamidation in situ of 16 per cent of the protein-bound glutaminyl residues. The extent of deamidation was not increased by incubation or by prolonged hypoxia and was unaffected by prior anaesthesia or by incubation of slices with 10 mM-NH4Cl or 40 mM-malonate. Slices prepared from animals intoxicated with methionine sulphoximine exhibited no deamidation. No deamidation was observed for slices of subcortical white matter, liver, kidney, testis or diaphragm of the cat. Cortical proteins from other species appeared to behave similarly to those of the cat. The 5-4 μmol of NH3 released/g of fresh cortex could account for about 85 per cent of the endogenous free ammonia regularly encountered in such slices. Hence the labile fraction of protein-bound glutaminyl amide groups represents, as previously suspected, a major source of endogenous cerebral NH3. Proteins isolated from cerebral cortical slices incubated with L-[U-14C]glutamic acid or L-[U-14C]glutamine contained 105 (±0.095) per cent of the total 14C metabolized. The ratios (x 100) of protein to free pool specific radioactivities (c.p.m.μmol) of glutamic acid and of glutamine were in the range 0-22 to 0-42, or of the same order as previously reported for other amino acids. Comparable results were obtained with proteins isolated from cerebral cortical slices incubated with 10 mM-15NH4Cl or L-[amide-15N]glutamine or both. In the amide N of protein-bound glutaminyl residues the atoms per cent excess 15N ranged from 007 to 0-42. This degree of labelling could be accounted for completely by the turnover of the entire glutaminyl moiety, as indicated by the 14C studies. Simultaneous analyses of free pool NH3 and glutamine suggested that transfer of glutamine from medium to slice involves deamidation as it is taken up and reamidation after entry.  相似文献   

12.
Abstract— To determine the mechanism of neurotoxicity of kainic acid, striatal slices (350μ) were incubated in oxygenated Krebs buffer with kainic acid and other depolarizing agents; and the alterations in the uptake and retention of 22Na+, 86Rb+ (as a measure of K +), 3HzO and the levels of ATP were determined. The excitatory amino acid, L-glutamate (10 mM) increases striatal slice uptake and retention of Na+, K+ and H2O but decreases ATP levels whereas the neuroexcitant, A'-methyl aspartate, increases only Na+ and H2O. Veratridine (100μM), which opens electrogenic sodium channels, and ouabain (100μM), which inhibits Na+-K+ ATPase, both elevate striatal Na+ and H2O but considerably reduce K+ and ATP. The effects of these different depolarizing agents on the parameters examined are consistent with their mechanisms of actions and support the validity of this in vitro method. Although 10mM-kainate significantly depresses striatal K+ and ATP, lower concentrations of kainate (5mM-0.1μ) elevate striatal uptake of Na+ but do not markedly affect H2O, K+ or ATP. Kainate (10mM-lμM) does not exhibit additivity with 10 mM-glutamate with respect to Na+ permeability but does significantly potentiate glutamate's ATP depleting effects. Injection of 10 nmol of kainate into the striatum in vivo causes a reduction in striatal ATP 1 h afterward which is comparable to that occurring in vitro with 10mM-kainate alone or with lower concentrations of kainate (≥1/μM) with 10 mM-glutamate. These results suggest that kainate alone is directly neurotoxic at 10mM or neurotoxic at lower concentrations in combination with the high intrasynaptic levels of glutamate on neurons receiving glutamatergic innervation.  相似文献   

13.
Cyclic nucleotide phosphodiesterase activity of porcine cerebral cortical extracts was measured with 0.1–100 μM-cyclic AMP and cyclic GMP and found to be dependent on both Ca2+ and added cyclic nucleotides. With decreasing substrate concentration activity with cyclic GMP became more dependent on Ca2+ whereas hydrolysis of cyclic AMP became less dependent. Cyclic GMP at 3 μM stimulated the hydrolysis of 0.1–10μM-cyclic AMP in the absence of Ca2+ (< 10-10M) but inhibited activity with 200 μM-Ca2+ present. This differential, substrate- and Ca2+-dependent regulation was attributed to the presence of at least two types of phosphodiesterase distinguishable by DEAE-column chromatography. In the absence of Ca2+, activity with 1 μM-cyclic GMP eluted in one minor peak followed by two major peaks, D-I and D-II. Activity with 1 μM-cyclic AMP eluted almost entirely in D-II. Hydrolysis of cyclic AMP in D-II was activated by cyclic GMP. With added Ca2+ plus a Ca2+-dependent regulator (CDR), activity with 1 μM-cyclic GMP was markedly increased and eluted entirely at D-I. Total activity with 1 μM-cyclic AMP was only moderately increased and eluted as D-I with a shoulder at D-II. Elution profiles with 100 μM-substrate were relatively independent of substrate, with D-I predominant with Ca2+·CDR present and D-II predominant in its absence. Kinetic analysis of rechromatographed D-I showed a 20- to 40-fold activation by Ca2+·CDR that was largely due to an increase in Vmax, with only 50% decreases in Km Both substrates competitively inhibited hydrolysis of the other with Ki values equal to their respective Km values (1.7 μM for cyclic GMP and 48 μM for cyclic AMP with Ca2+-CDR present). Studies with theophylline and trifluoperazine indicate differential, substrate-dependent inhibitions of both enzymes. These findings demonstrate that phosphodiesterase activity in neural tissue is subject to regulation by Ca2+, cyclic GMP, and inhibitors in a complex, substrate-specific and concentration-dependent manner.  相似文献   

14.
It has been proposed that the major portion of [3H]GABA released from rat cortical slices upon exposure to high K+ comes from a neuronal pool. Using carrier mediated exchange diffusion of DABA or β-alanine in the superfusion medium for GABA in the slice as a technique for manipulating neuronal and glial pools of GABA, it was found that DABA but not β-alanine substantially reduced the K+ stimulated release of [3H]GABA. The present study using synaptosomes as an in vitro model of the nerve ending was undertaken to ascertain whether this neuronal pool of releasable [3H]GABA was associated with a specific transmitter pool in nerve endings. A continuous superfusion system employing a Ca2+ pulse to produce a calcium coupled release (Levy et al, 1973) was used to study the effect of two concentrations (20 μm , 1 mm ) of DABA and β-alanine on the release of [3H]GABA from synaptosomes. In contrast to the results in slices, DABA at both concentrations had no effect on the release of [3H]GABA from synaptosomes in spite of evidence that exchange diffusion was occurring. With protoveratrine as the releasing agent there was no effect of DABA on the release of [3H]GABA from either slices or synaptosomes. The results suggest that the major portion of [3H]GABA released from cortical slices by high K+ comes from a non-transmitter pool in the neuron. Use of K+ stimulated release of amino acids from cortical slices as a criterion for neurotransmitter function must be viewed with caution.  相似文献   

15.
Electrolyte distribution in rabbit superior cervical ganglion   总被引:7,自引:2,他引:5  
Abstract— Superior cervical ganglia of the rabbit were removed and analysed for Na+, K+, Ca2+, Mg2+ and Cl?. The mean electrolyte content in μmole/g wet wt. was as follows: Na+, 64.7 ± 1.3; K+, 65.1 ± 2.7; Ca2+, 3.71 ± 0.28; Mg2+, 3.70 ± 0.50; and Cl?, 50.15 ± 2.26. Water content was 0.76 ± 0.01 ml/g wet wt. Extracellular space was 0.37 ± 0.01 ml/g, and the vascular space 0.0238 ± 0.0002. The mean resting potential of the rabbit superior cervical ganglion was – 68.6 mv. After correction for extracellular electrolyte content, the potential differences, ENa, EK and Ecl, were estimated to be +33.6 mv, –96.9 mv and -41.1 mv, respectively, in the ganglia. Permeability coefficients for K+, Na+, and Cl? were estimated to be 1:0.06:0.02. Replacement of sodium in physiological saline solution by lithium results in a displacement of 94 per cent of the sodium content of the ganglion and 69 per cent of the potassium after 30 min of equilibration.  相似文献   

16.
—A study was made of the effects of unilateral visual deprivation and stimulation upon the activities of alkaline phosphatase (EC 3.1.3.1), acid phosphatase (EC 3.1.3.2), Na+-K+ activated Mg2+ catalysed ATPase (EC 3.6.1.4) and upon the Na+ and K+ contents of the optic lobe of adult pigeon (Columba livia). Visual deprivation was achieved by eyelid suturing or by enucleation and maintained for 1–9 weeks. Unilateral visual stimulation was maintained for 75 min following 72 h of darkness. A statistically significant increase in the activity of alkaline phosphatase activity was observed in the optic lobe after unilateral visual deprivation whereas unilateral visual stimulation resulted in the opposite effect. Acid phosphatase activity was found to be unchanged under all experimental conditions. Na+-K+ ATPase activity was found to increase significantly following unilateral visual stimulation and following eyelid suturing in the corresponding optic lobes; unilateral enucleation resulted in a decrease in the Na+-K+ ATPase activity. An increase in the enzyme activity was found to be associated with an increase in the level of Na+-ion and a decrease in the level of K+-ion, and vice versa.  相似文献   

17.
The effects of cations on taurine, hypotaurine and GABA uptake were studied in mouse brain slices under identical experimental conditions. The uptakes were all strictly sodium-dependent. The omission or excess of K+ inhibited similarly taurine, hypotaurine and GABA uptake. The effects of omission of Ca2+ or Mg2+ were less pronounced. In both normal-sodium and low-sodium media all uptakes were saturable, consisting of both low-and high-affinity transport components. TheK m constants for both low-and high-affinity transport components of hypotaurine and GABA increased in low-sodium medium, suggesting that sodium ions are necessary for their attachment to possible carrier sites in plasma membranes. In the case of taurine, however, the translation rate rather than the affinity of carrier sites was affected in Na+-free media. More than two sodium ions may be involved in the transport of one hypotaurine and one GABA molecule, whereas the coupling ratio between sodium and taurine was at least three. In its cation dependence hypotaurine uptake thus resembled more GABA uptake than taurine uptake.  相似文献   

18.
—Microsomal fractions prepared from guinea pig cerebral cortex manifested ADP-ATP exchange activity, 40–99 per cent of which was extractable by dilute salt solutions. All of the (Na+, K+)-ATPase activity remained in the particulate material. The unextracted ADP-ATP exchange activity was stimulated six to seven fold by a non-ionic detergent (Lubrol W). When pre-extracted microsomes were sedimented in a sucrose density gradient, the ADP-ATP exchange activity was more widely distributed than (Na+, K+)-ATPase or adenylate kinase activities. The ADP-ATP exchange activity of microsomes extracted with NaI was stimulated by Na+ ions when the Mg2+ concentration in the reaction mixture was low (0·2 mm ). The Na+ stimulation of exchange activity was more variable than was the stimulation of phosphate formation by Na+ plus K+. The Na+-stimulated ADP-ATP exchange reaction of extracted microsomes may be a component of the (Na+, K+)-ATPase system, which has not been freed from adenylate kinase or possibly other contributing enzyme systems.  相似文献   

19.
Calcium-salinity interactions affect ion transport in Chara corallina   总被引:1,自引:1,他引:0  
Detached internodes of Chara corallina survived in solutions containing 100 mol m?3 NaCl when the external concentration of Ca2+ was greater than 1 mol m?3. Na+ influx was roughly proportional to external Na+ up to 100 mol m?3 NaCl. Na+ influx involved two components: a Ca2+-insensitive influx which allowed the passage of Na+ independently of external Ca2+; and a Ca2+-inhibitable mechanism where Na+ influx was inversely proportional to external Ca2+. The Ca2+-inhibitable Na+ influx was similar to the Ca2+-inhibitable K+ influx. Mg2+ and Ba2+ were able to substitute for Ca2+ in partially inhibiting Na+ influx in the absence of external Ca2+. The effect of Ca2+ appears specific to Na+ and K+ influx since the effects of a Ca2+-free solution on the influx of some other cations, anions and neutral compounds is small. It is suggested that Na+ influx via the Ca2+-inhibitable mechanism represents Na+ leakage through K+ channels and that cell death at high salinity occurs due to a cytotoxic Na+ influx via this mechanism.  相似文献   

20.
Abstract: Bovine chromaffin secretory vesicle ghosts loaded with Na+ were found to take up Ca2+ when incubated in K+ media or in sucrose media containing micromolar concentrations of free Ca2+. Li+- or choline+loaded ghosts did not take up Ca2+. The Ca2+ accumulated by Na+-loaded ghosts could be released by the Ca2+ ionophore A23187, but not by EGTA. Ca2+ uptake was inhibited by external Sr2+, Na +, Li +, or choline +. All the 45Ca2+ accumulated by Na+-dependent Ca2+ uptake could be released by external Na +, indicating that both Ca2+ influx and efflux occur in a Na+-dependent manner. Na + -dependent Ca2+ uptake and release were only slightly inhibited by Mg2+. In the presence of the Na+ ionophore Monensin the Ca2+ uptake by Na +-loaded ghosts was reduced. Ca2+ sequestered by the Na+-dependent mechanism could also be released by external Ca2+ or Sr2+ but not by Mg2+, indicating the presence of a Ca2+/Ca2+ exchange activity in secretory membrane vesicles. This Ca2+/Ca2+ exchange system is inhibited by Mg2+, but not by Sr2+. The Na + -dependent Ca2+ uptake system in the presence of Mg2+ is a saturable process with an apparent Km of 0.28 μM and a Vmax= 14.5 nmol min?1 mg protein?1. Ruthenium red inhibited neither the Na+/Ca2+ nor the Ca2+/Ca2+ exchange, even at high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号