首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hyperthermia (41-43 degrees C) on the membrane potential (calculated from the transmembrane distribution of [3H]tetraphenylphosphonium) and Na+ transport of Chinese hamster V79 fibroblasts were studied. At 41 degrees C, hyperthermia induced a membrane hyperpolarization of log phase cells (5 to 26 mV) that was reversible upon returning to 37 degrees C. The hyperpolarization was inhibited 50% by 1 mM ouabain or 0.25 mM amiloride, an inhibitor of Na+:H+ exchange. Shifting temperature to 41 degrees C increased ouabain-sensitive Rb+ uptake indicating activation of the electrogenic Na+ pump. At 43 degrees C for 60 min, the membrane potential of log phase cells depolarized (20-35 mV). Parallel studies demonstrated enhanced Na+ uptake at 41 degrees C only in the presence of ouabain. At 43 degrees C, Na+ uptake was increased relative to controls with or without ouabain present. At both 41 and 43 degrees C, 0.25 mM amiloride inhibited heat-stimulated Na+ uptake. Na+ efflux was enhanced at 41 degrees C in a process inhibited by ouabain. Thus, one consequence of heat treatment at 41 degrees C is activation of Na+:H+ exchange with the resultant increase in cytosolic [Na+] activating the electrogenic Na+ pump. At temperatures greater than or equal to 43 degrees C, the Na+ pump is inhibited.  相似文献   

2.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37 degrees C and pressure treated at 15 degrees C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15 degrees C and pressure treated at 37 degrees C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

3.
The susceptibility of representative strains of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum (the MAIS group) to chlorine was studied to identify factors related to culture conditions and growth phase that influenced susceptibility. M. avium and M. intracellulare strains were more resistant to chlorine than were strains of M. scrofulaceum. Transparent and unpigmented colony variants were more resistant to chlorine than were their isogenic opaque and pigmented variants (respectively). Depending on growth stage and growth rate, MAIS strains differed in their chlorine susceptibilities. Cells from strains of all three species growing in early log phase at the highest growth rates were more susceptible than cells in log and stationary phase. Rapidly growing cells were more susceptible to chlorine than slowly growing cells. The chlorine susceptibility of M. avium cells grown at 30 degrees C was increased when cells were exposed to chlorine at 40 degrees C compared to susceptibility after exposure at 30 degrees C. Cells of M. avium grown in 6% oxygen were significantly more chlorine susceptible than cells grown in air. Chlorine-resistant MAIS strains were more hydrophobic and resistant to Tween 80, para-nitrobenzoate, hydroxylamine, and nitrite than were the chlorine-sensitive strains.  相似文献   

4.
Pseudomonas aeruginosa, which was resistant to a wide variety of antibiotics, became sensitive to several of these antibiotics when grown and tested at 46 degrees C. Cell wall antibiotics such as penicillin G and ampicillin were only effective when added to cells growing at 46 degrees C prior to a temperature shift to 37 degrees C. Antibiotics which penetrate the cytoplasmic membrane to express their inhibiting action present a pattern different from those which are active against the outer cell wall. In order that these compounds be effective, the permeability of the cytoplasmic membrane must be further altered with agents such as EDTA which allow the penetration of actinomycin D. Inhibitors of protein synthesis, such as streptomycin and chloramphenicol, have increased access to their sites of action in cells grown at 46 degrees C. Cells grown at 46 degrees C have 40% less lipopolysaccharide (LPS) than cells grown at 37 degrees C and the LPS aggregates were of large molecular size in cells grown at 46 degrees C. Growth at 46 degrees C affects the permeability properties of the outer cell wall more than the permeability properties of the cytoplasmic membrane and this was due, in part, to the selective release of LPS of LPS-protein complexes at elevated growth temperatures.  相似文献   

5.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37°C and pressure treated at 15°C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15°C and pressure treated at 37°C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

6.
Acholeplasma laidlawii, a mycoplasma, is unable to synthesize unsaturated fatty acids but it will incorporate them into its plasma membrane if they are supplied exogeneously. Thus the fatty acid composition of the cell membrane can be defined by growing the organism in media containing specific fatty acids. We obtained cells with predominantly one type of unsaturated fatty acid (either oleic, linoleic or linolenic acid) or cells with only saturated fatty acid in the cell membrane. The cells were irradiated with 7 MeV electrons and the effect of membrane fatty acid composition on cell survival was examined. At 200 Gy/min and 0.5 degrees C (melting ice) there was little difference in the radiation sensitivities of the cells grown in unsaturated fatty acids either in aerated or anoxic radiation conditions. However, the cells containing saturated fatty acids irradiated in anoxic conditions were markedly more sensitive than the cells containing unsaturated fatty acids. At 200 Gy/min and 37 degrees C the two types of cells were of similar sensitivity both in aerated and anoxic radiation conditions. At 5 Gy/min at 0.5 degrees C the cells containing linolenic acid (18:3) were less sensitive than those containing solely saturated fatty acids. However, at 5 Gy/min at 37 degrees C there was no difference in sensitivity between these two types of cell. Our results strongly argue against the involvement of lipid peroxidation as a molecular change leading to cell death.  相似文献   

7.
Mycobacterium smegmatis ATCC 607 was grown at 27 and 37°C, with and without exogenous unsaturated fatty acids, viz. elaidic, oleic and palmitoleic acids, added to the growth medium. The total lipid content of M. smegmatis ATCC 607 was lower at 27°C, and with added oleic acid, when compared with the controls, but higher in presence of palmitoleic acid. At 37°C no significant differences were noted in the total lipid content. In general, the total lipid content was lower with all of the fatty acid supplementations at both 27 and 37°C. The phosphatidylethanolamine content was slightly higher at 27°C in the presence of elaidic or palmitoleic acid, but was markedly lower with oleic acid supplementation at 37°C. The cardiolipin content was lower in the presence of any of the fatty acids at 27°C, and higher in the medium supplemented with elaidic or oleic acid at 37°C. The unsaturated to saturated fatty acids ratio was higher with palmitoleic acid supplementation at 27°C, but remained unchanged in cells grown at 37°C. The modifications in mycobacterial lipids are a reflection of the organism's ability to adapt to changing growth conditions.  相似文献   

8.
The growth of thermosensitive Bacillus subtilis lysyl- and tryptophanyl-transfer ribonucleic acid synthetase mutants (lysS1 and trypS1) (l-lysine:transfer ribonucleic acid [tRNA] ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) was terminated when exponential phase cells were shifted from 30 to 43 C in a rich medium. Under these conditions, the temperature-inhibited cells undergo thermal death; they rapidly lose their ability to form colonies at 30 C. Another lysyl-tRNA synthetase mutant (lysS2) is refractory to thermal death even though its growth is inhibited at 43 C. The thermal death response of the lysS1 mutant is affected by the stage of cell development. At periods in spore outgrowth and sporogenesis these cells become refractory to thermal death. The refractory state does not result from the production of an inhibitor, or from the degradation of an activator of thermal death. However, culture medium composition does modify the thermal death response. Rich media enhance the effect, and no thermal death occurs in the lysS1 strain grown in a minimal medium. Temperature-sensitive cells can grow in a lysine- (0.25 mM) or tryptophan- (0.25 mM) supplemented minimal medium at 43 C, but amino acid concentrations of 25 mM only transiently protect trypS1 and lysS1 cells from thermal death in a rich medium. Osmotic agents such as sucrose (0.5 M) and NaCl (0.34 M) completely prevent thermal death in the lysS1 strain, although growth is still arrested. On solid media, sucrose stabilized lysS1 cells can form colonies at the restrictive temperature, but neither sucrose (0.5 M) nor NaCl (0.34 M) stabilized the lysS1 enzyme in vitro. Chloramiphenicol increased the rate of thermal death of the lysS1 strain but decreased the thermal death response of the trypS1 mutant. Considering the nature of the enzyme defect in the lysS1 strain, the common genetic origin of the spore and vegetative lysyl-tRNA synthetase, and the protective effects exerted by lysine and osmotic agents, it is tentatively concluded that thermal death results from irreversible inactivation of the mutant gene product. According to this hypothesis, either the lysS1 enzyme is altered during sporogenesis or some physiological or structural aspect of this developmental phase can stabilize the mutant phenotype and thereby rescue cells from thermal death.  相似文献   

9.
Escherichia coli cells showed maximum activity of gamma-glutamyltranspeptidase (EC 2.3.2.2) when they were grown at 20 degrees C, 14% of maximum activity at 37 degrees C, and none at 43 degrees C. The enzyme activity of intact cells grown at 20 degrees C was stably maintained after the temperature was changed to 45 degrees C. The activity increased during the exponential phase, and maximum activity was found at stationary phase. Its intracellular localization in the periplasmic space was confirmed.  相似文献   

10.
Fork DC 《Plant physiology》1979,63(3):524-530
The thermophilic blue-green alga Synechococcus lividus was grown at 55 and 38 C. Arrhenius plots of the transient reduction of cytochrome during actinic illumination with light that excited both pigment systems revealed breaks near 43 and 26 C for cells grown at 55 C. In cells grown at 38 C these breaks occurred near 37 and 28 C, respectively. The shift from pigment state 1 to state 2 measured by fluorescence transients also showed characteristic breaks in the Arrhenius plots at 44 C for cells grown at 55 C and at 37 to 38 C and possibly at 25 C for cells grown at 38 C. The break points in the Arrhenius plots for the state shift as well as for the cytochrome f reduction are discussed in relation to phase transitions of thylakoid membrane lipids as studied by the temperature dependence of chlorophyll a fluorescence.  相似文献   

11.
The temperature-sensitive events which prevent Cryptococcus albidus from growing at 37 C were investigated. Cultures incubated at 37 C immediately after inoculation did not increase in optical density nor in cell numbers, and by 24 h 90% of cells in such cultures were deformed and dead. When cultures in log phase were shifted from 23 to 37 C the optical density increased but the cell numbers did not. Morphological observations revealed that the increase in turbidity at 37 C represented enlargement and distortion of cells without appreciable replication. Uptake and incorporation of (14)C-leucine were similar at 23 and 37 C. There was no difference in (14)CO(2) evolution from cells at either temperature. Uptake and incorporation of adenine-8-(14)C into RNA was slightly lower in cells incubated at 37 C. There was, however, a 60% reduction in incorporation of adenine-8-(14)C into DNA after 3 hr at 37 C. Nuclear staining revealed that nuclear migration did not occur in cells incubated at 37 C. Thus the data indicate that both adenine incorporation into DNA and nuclear migration prior to nuclear division by C. albidus are temperature sensitive.  相似文献   

12.
The growth of a stalked bacterium, Caulobacter crescentus, has been synchronized easily and reproducibly by a new method. When this bacterium is grown to a late log phase in nutrient broth at 30 C with aeration, swarmer cells are accumulated in the culture to 80% of the whole cell population. When this culture is inoculated into fresh pre-warmed broth at twentyfold dilution, it immediately initiates synchronous cell growth. Simultaneously, synchronous cell differentiation is monitored by the susceptibility of the cells to RNA phage infection. The swarmer cells accumulated in the late log phase of growth possess nearly the same susceptibility to RNA phage infection as those in the early log phase of growth while RNA phage-adsorbing capacity is lower in such swarmer cells. It is suggested that the swarmer cells accumulated in the late log phase of growth have lost some pili.  相似文献   

13.
The morphology and cell wall composition of Bacillus coagulans, a facultative thermophile, were examined as a function of growth temperature. The morphology of the organism varied when it was grown at different temperatures; at 37 C the organism grew as individual cells which increased in length with increasing growth temperature. At 55 C it grew in long chains of cells. Cell wall prepared from cells grown at 37 C contained 44% teichoic acid by weight, whereas cells grown at 55 C contained 29% teichoic acid. Teichoic acid from these cells was a polymer of glycerol phosphate containing galactose and ester alanine. The ratio of ester alanine to phosphate was significantly higher in cell walls and teichoic acid from 37 C-grown cells compared with those from 55 C-grown cells. Other differences observed were that cells grown at 55 C contained a lower level of autolytic ability, produced cell walls which bound more Mg(2+), and contained less peptide cross-bridging in its peptidoglycan layer than cells grown at 37 C.  相似文献   

14.
15.
The growth of a stalked bacterium, Caulobacter crescentus, has been synchronized easily and reproducibly by a new method. When this bacterium is grown to a late log phase in nutrient broth at 30 C with aeration, swarmer cells are accumulated in the culture to 80% of the whole cell population. When this culture is inoculated into fresh pre-warmed broth at twentyfold dilution, it immediately initiates synchronous cell growth. Simultaneously, synchronous cell differentiation is monitored by the susceptibility of the cells to RNA phage infection. The swarmer cells accumulated in the late log phase of growth possess nearly the same susceptibility to RNA phage infection as those in the early log phase of growth while RNA phage-adsorbing capacity is lower in such swarmer cells. It is suggested that the swarmer cells accumulated in the late log phase of growth have lost some pili.  相似文献   

16.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43 degrees C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20 degrees C, but in a liquid crystalline state when cells were grown at 37 and 43 degrees C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

17.
The susceptibility of representative strains of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum (the MAIS group) to chlorine was studied to identify factors related to culture conditions and growth phase that influenced susceptibility. M. avium and M. intracellulare strains were more resistant to chlorine than were strains of M. scrofulaceum. Transparent and unpigmented colony variants were more resistant to chlorine than were their isogenic opaque and pigmented variants (respectively). Depending on growth stage and growth rate, MAIS strains differed in their chlorine susceptibilities. Cells from strains of all three species growing in early log phase at the highest growth rates were more susceptible than cells in log and stationary phase. Rapidly growing cells were more susceptible to chlorine than slowly growing cells. The chlorine susceptibility of M. avium cells grown at 30°C was increased when cells were exposed to chlorine at 40°C compared to susceptibility after exposure at 30°C. Cells of M. avium grown in 6% oxygen were significantly more chlorine susceptible than cells grown in air. Chlorine-resistant MAIS strains were more hydrophobic and resistant to Tween 80, para-nitrobenzoate, hydroxylamine, and nitrite than were the chlorine-sensitive strains.  相似文献   

18.
Hybrid lethality, a type of reproductive isolation, is a genetically controlled event appearing at the seedling stage in interspecific hybrids. We characterized the lethality of F(1) hybrid seedlings from Nicotiana gossei Domin and Nicotiana tabacum cv Bright-Yellow 4 using a number of traits including growth rate, microscopic features of tissues and cells, ion leakage, DNA degradation, reactive oxygen intermediates including superoxide radical (O(2)(-)) and hydrogen peroxide (H(2)O(2)), and expression of stress response marker genes. Lethal symptoms appeared at 4 d after germination in the basal hypocotyl and extended toward both the hypocotyl and root of the plants grown at 26 degrees C. Microscopic analysis revealed a prompt lysis of cell components during cell death. Membrane disruption and DNA degradation were found in the advanced stage of the lethality. The death of mesophyll cells in the cotyledon was initiated by the vascular bundle, suggesting that a putative factor inducing cell death diffused into surrounding cells from the vascular tissue. In contrast, these symptoms were not observed in the plants grown at 37 degrees C. Seedlings grown at 26 degrees C generated larger amounts of reactive oxygen intermediate in the hypocotyl than those grown at 37 degrees C. A number of stress response marker genes were expressed at 26 degrees C but not at 37 degrees C. We proposed that a putative death factor moving systemically through the vascular system induced a prompt and successive lysis of the cytoplasm of cells and that massive cell death eventually led to the loss of the hybrid plant.  相似文献   

19.
The relationship between membrane lipid composition and membrane lipid phase transitions was investigated in Yersinia enterocolitica cells grown at 5, 22 and 37°C. The total phospholipid concentrations were 9.4, 7.3 and 6.3% of the cell dry weight for cells grown at 5, 22 and 37°C, respectively. The relative concentrations of the three major phospholipids, phosphatidylethanolamine (73–76%), phosphatidylglycerol (9–11%) and cardiolipin (11–13%) were essentially the same at all three growth temperatures. The ratios of unsaturated to saturated fatty acids were 2.2, 1.1 and 0.4 for cells grown at 5, 22 and 37°C, respectively. This change in the fatty acid composition in response to temperature changes is similar to the patterns reported for other organisms. Reversible thermotropic phase transitions were detected by calorimetric analysis in both pure lipid preparations and membrane preparations. The mid-points of the thermotropic phase transitions were at ?13, ?9 and 1°C for membranes from cells grown at 5, 22 and 37°C, respectively. The phase transitions of the membranes from cells grown at the three different temperatures occurred below the lowest growth temperature (5°C). The alternations in the fatty acid composition in Y. enterocolitica did not, therefore, appear to be required to adjust membrane fluidity but might rather be required for some other membrane function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号