首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphitropic proteins: a new class of membrane proteins   总被引:16,自引:0,他引:16  
  相似文献   

2.
Two small multimeric histidine-rich proteins, AgNt84 and Ag164, encoded by two nodule-specific cDNAs isolated from nodule cDNA libraries of the actinorhizal host plant Alnus glutinosa, represent a new class of plant metal binding proteins. This paper reports the characterization of the purified in vitro-expressed proteins by size exclusion chromatography, circular dichroism, equilibrium dialysis, metal affinity chromatography coupled with mass spectrometry, and nuclear magnetic resonance spectroscopy. These analyses reveal that each polypeptide is capable of binding multiple atoms of Zn2+, Ni2+, Co2+, Cu2+, Cd2+ and Hg2+. A reversible shift in histidine C1 and C2 protons in NMR analysis occurred during titration of this protein with ZnCl2 strongly suggesting that histidine residues are responsible for metal binding. AgNt84 and Ag164 are not related to metal binding metallothioneins and phytochelatins and represent a new class of plant metal binding proteins that we propose to call metallohistins. Possible biological roles in symbioses for AgNt84 and Ag164, and their potential for use in bioremediation are discussed.  相似文献   

3.
The nuclei of bovine spermatids and spermatozoa are surrounded by dense cytoplasmic webs sandwiched between the nuclear envelope and the acrosome and plasma membrane, respectively, filling most of the cytoplasmic space of the sperm head. This web contains a complex structure, the perinuclear theca, which is characterized by resistance to extractions in nondenaturing detergents and high salt buffers, and can be divided into two major subcomponents, the subacrosomal layer and the postacrosomal calyx. Using calyces isolated from bull and rat spermatozoa we have identified two kinds of basic proteins as major constituents of the thecal structure and have localized them by specific antibodies at the light and electron microscopic level. These are an Mr 60,000 protein, termed calicin, localized almost exclusively to the calyx, and a group of multiple-band polypeptides (MBP; Mr 56,000-74,000), which occur in both the calyx and the subacrosomal layer. The polypeptides of the MBP group are immunologically related to each other, but unrelated, by antibody reactions and peptide maps, to calicin. We show that these basic cytoskeletal proteins are first detectable in the round spermatid stage. As we have not detected any intermediate filament proteins and proteins related to nuclear lamins of somatic cells in sperm heads, we conclude that the perinuclear theca and its constituents, calicin and MBP proteins, are the predominant cytoskeletal elements of the sperm head. Immunologically cross-reacting polypeptides with similar properties have been identified in the heads of rat and human spermatozoa. We speculate that these insoluble basic proteins contribute, during spermiogenesis, to the formation of the perinuclear theca as an architectural element involved in the shape changes and the intimate association of the nucleus with the acrosome and the plasma membrane.  相似文献   

4.
Skin and mucous membranes come in contact with external environment and protect tissues from infections by producing antimicrobial peptides. We report that human peptidoglycan recognition proteins 3 and 4 (PGLYRP3 and PGLYRP4) are secreted as 89-115-kDa disulfide-linked homo- and heterodimers and are bactericidal against several pathogenic and nonpathogenic transient, but not normal flora, Gram-positive bacteria. PGLYRP3 and PGLYRP4 are also bacteriostatic toward all other tested bacteria, which include Gram-negative bacteria and normal flora Gram-positive bacteria. PGLYRP3 and PGLYRP4 are also active in vivo and protect mice against experimental lung infection. In contrast to antimicrobial peptides, PGLYRPs kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. PGLYRP3 and PGLYRP4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. Thus, we have identified the function of mammalian PGLYRP3 and PGLYRP4, and show that they are a new class of bactericidal and bacteriostatic proteins that have different structures, mechanism of actions, and expression patterns than antimicrobial peptides.  相似文献   

5.
In bacteria, low-copy number plasmids ensure their stable inheritance by partition loci (par), which actively distribute plasmid replicates to each side of the cell division plane. Using time-lapse fluorescence microscopic tracking of segregating plasmid molecules, a new study provides novel insight into the workings of the par system from Escherichia coli plasmid R1. Despite its relative simplicity, the plasmid partition spindle shares characteristics with the mitotic machinery of eukaryotic cells.  相似文献   

6.
Triad1 was recently identified as a nuclear RING finger protein, which is up-regulated during retinoic acid induced granulocytic differentiation of acute leukemia cells. Here we show that a cysteine-rich domain (C6HC), present in Triad1, is conserved in at least 24 proteins encoded by various eukaryotes. The C6HC consensus pattern C-x(4)-C-x(14-30)-C-x(1-4)-C-x(4)-C-x(2)-C-x(4)-H-x(4)-C defines this structure as the fourth family member of the zinc-binding RING, LIM, and LAP/PHD fingers. Strikingly, in 22 of 24 proteins the C6HC domain is flanked by two RING finger structures. We have termed the novel C6HC motif DRIL (double RING finger linked). The strong conservation of the larger tripartite TRIAD (two RING fingers and DRIL) structure indicates that the three subdomains are functionally linked and identifies a novel class of proteins.  相似文献   

7.
60% of the peripheral membrane skeleton of Euglena gracilis consists of equimolar amounts of two proteins (articulins) with M(r)s in SDS gels of 80 and 86 kD. To understand eventually how these proteins assemble and function in maintaining cell form and membrane integrity we have undertaken a molecular characterization of articulins. A lambda gt11 expression library constructed from Euglena gracilis mRNAs was screened with antibodies against both articulins. Two sets of cDNAs were recovered, and evidence from three independent assays confirmed that both sets encoded articulins: (a) Anti-articulin antibodies recognized a high molecular weight beta-galactosidase (beta-gal) fusion protein expressed in bacteria infected with lambda gt11 cDNA clones. (b) Antibodies generated against the bacterially expressed beta-gal fusion protein identified one or the other articulin in Western blots of Euglena proteins. These antibodies also localized to the membrane skeletal region in thin sections of Euglena. (c) Peptide maps of the beta-gal fusion protein were similar to peptide maps of Euglena articulins. From the nucleotide sequence of the two sets of cDNAs an open reading frame for each articulin was deduced. In addition to 37% amino acid identity and overall structural similarity, both articulins exhibited a long core domain consisting of over 30 12-amino acid repeats with the consensus VPVPV--V--. Homology plots comparing the same or different articulins revealed larger, less regular repeats in the core domain that coincided with predicted turns in extended beta-sheets. Outside the core domain a short hydrophobic region containing four seven-amino acid repeats (consensus: APVTYGA) was identified near the carboxy terminus of the 80-kD articulin, but near the amino terminus of the 86-kD articulin. No extensive sequence similarities were found between articulins and other protein sequences in various databanks. We conclude that the two articulins are related members of a new class of membrane cytoskeletal proteins.  相似文献   

8.
The development of soluble receptor proteins that recognise given target molecules--ranging from small chemical compounds to macromolecular structures at a cell surface, for example--is of ever increasing importance in the life sciences and biotechnology. For the past century this area of application was dominated by antibodies, which were traditionally generated via immunisation of animals but have recently also become available by means of protein engineering methods. The so-called 'anticalins' offer an alternative type of ligand-binding proteins, which has been constructed on the basis of lipocalins as a scaffold. The central element of this protein architecture is a beta-barrel structure of eight antiparallel strands, which supports four loops at its open end. These loops form the natural binding site of the lipocalins and can be reshaped in vitro by extensive amino acid replacement, thus creating novel binding specificities. The bilin-binding protein (BBP) was employed as a model system for the preparation of a random library with 16 selectively mutagenized residues. Using bacterial phagemid display and colony screening techniques, several lipocalin variants--termed anticalins--have been selected from this library, exhibiting binding activity for compounds like fluorescein or digoxigenin. Anticalins possess high affinity and specificity for their prescribed ligands as well as fast binding kinetics, so that their functional properties are similar to those of antibodies. Compared with them, they exhibit however several advantages, including a smaller size, composition of a single polypeptide chain, and a simple set of four hypervariable loops that can be easily manipulated at the genetic level. Apart from haptenic compounds as targets, anticalins should also be able to recognise macromolecular antigens, provided that the random library is accordingly designed. Hence, they should not only serve as valuable reagents for bioanalytical purposes, but may also have a potential in replacing antibodies for medical therapy.  相似文献   

9.
10.
The erythrocyte membrane skeleton is composed of the number of proteins isolated and characterized. One of the major proteins of cytoskeleton is actin presented in erythrocytes in the form of short protofilaments. This review will focus on the manner of attachment of actin protofilaments to the red cell membrane, and on the relationships between skeleton membrane proteins. Membrane skeleton proteins in erythrocytes are not unique. Recently a lot of proteins similar to the red cell membrane skeleton proteins were found in a wide variety of non-erythroid cells. This fact gives the opportunity to suppose the existence of a unique protein system in erythroid and non-erythroid cells which provides the attachment of actin filaments to cell membranes and which might be the centre for the assembling of actin structures in the cortical cytoplasm.  相似文献   

11.
The cytoskeleton has a key function in the temporal and spatial organization of both prokaryotic and eukaryotic cells. Here, we report the identification of a new class of polymer-forming proteins, termed bactofilins, that are widely conserved among bacteria. In Caulobacter crescentus, two bactofilin paralogues cooperate to form a sheet-like structure lining the cytoplasmic membrane in proximity of the stalked cell pole. These assemblies mediate polar localization of a peptidoglycan synthase involved in stalk morphogenesis, thus complementing the function of the actin-like cytoskeleton and the cell division machinery in the regulation of cell wall biogenesis. In other bacteria, bactofilins can establish rod-shaped filaments or associate with the cell division apparatus, indicating considerable structural and functional flexibility. Bactofilins polymerize spontaneously in the absence of additional cofactors in vitro, forming stable ribbon- or rod-like filament bundles. Our results suggest that these structures have evolved as an alternative to intermediate filaments, serving as versatile molecular scaffolds in a variety of cellular pathways.  相似文献   

12.
Neurons are faced with the formidable challenge of having to assemble most of their cytoskeleton at axonal sites far removed from the protein synthetic machinery in the perikaryon. Their achievement seems all the more impressive now that new evidence is showing that the cytoskeleton may vary markedly in size and composition along the axon and exhibit striking regional specializations. Further complexity is contributed to this structure by a growing assortment of cytoskeleton-associated proteins that cross-link the various fibrous elements and stabilize cytoskeletal architecture. Much of the dynamic behavior of cytoskeletal proteins and polymers in axons is locally controlled. This regulation involves, in part, a system of protein kinases and phosphatases modulated by both intercellular and intracellular signals. Conceptual models of slow axonal transport have evolved to accommodate these new findings. BioEssays 20 :798–807, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

13.
Calcium ions act as modulators of many fundamental processes in eukaryotic cells. Although these processes apparently involve initial interactions between calcium ions and cell membranes, the identity of the putative membrane Ca2+-binding proteins has until recently been obscure. This article describes a recently discovered family of mammalian membrane proteins, of perhaps ancient origin, that may fulfil this function.  相似文献   

14.
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.  相似文献   

15.
A group of antigens related by their reactivity with monoclonal antibodies MPM-1 and MPM-2 appear as cells enter mitosis. These antibodies bind to a phosphorylated epitope on certain proteins, and therefore the antigens are presumed to be a group of phosphoproteins. A subset of these proteins has been shown previously to be components of mitotic microtubule organizing centers in PtK1 cells. We present here evidence that the mitosis-specific appearance of these phosphoproteins is a phenomenon common to all eukaryotic cells. The MPM reactive phosphoproteins were localized to mitotic spindle poles regardless of whether the spindle formed in the cytoplasm after nuclear envelope breakdown (open mitosis) or within the nucleus (closed mitosis). This reactivity was not dependent upon the presence of centrioles at the spindle poles. Proteins that contained the phosphorylated epitope were not, however, restricted to mitotic cells. Cells of neuronal derivation and flagellated cells showed specific localization of MPM antibody to the microtubule network and basal bodies respectively. On immunoblots, the MPM antibody reacted with brain MAP-1 among a number of other phosphoproteins. The identification of microtubule-associated protein (MAP)-1 correlates with the localization of the antibody to microtubules of neuroblastoma cells. These results suggest, that different phosphoprotein molecules detected by the MPM antibody may be specific for different mitotic microtubule organizing centers, basal bodies, and other specialized cytoskeletal structures; and the presence of a related phosphorylated domain on these proteins may be important for their proper function and/or interaction with microtubules.  相似文献   

16.
Bacteria can survive harsh conditions when growing in complex communities of cells known as biofilms. The matrix of the biofilm presents a scaffold where cells are attached to each other and to the surface. The biofilm matrix is also a protective barrier that confers tolerance against various antimicrobial agents. In this issue of Molecular Microbiology, Kobayashi and Iwano (2012) show that the liquid permeability of Bacillus subtilis biofilms is determined by a small secreted protein, i.e. BslA (formerly called YuaB). BslA is important for the proper development of biofilms, but unlike exopolysaccharide and TasA, is not directly involved in cell cluster formation, and is synthesized following the production of exopolysaccharide and amyloid fibres. The amphiphilic BslA protein forms a polymer in vitro and localizes in vivo to the surface of the biofilm. The microstructures of the biofilm wrinkles are reduced in the bslA mutant strain and the liquid repellency of the biofilm surface is diminished. Exogenously added BslA(42-181) protein complements the bslA mutation and restores not only water repellency, but also the formation of aerial structures. This study demonstrates that amphiphilic proteins have an important role in liquid repellency of biofilms and it suggests that these polymers contribute to antimicrobial resistance.  相似文献   

17.
《Cytotherapy》2022,24(8):755-766
Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema, dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients. Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up will be necessary to determine the long-term effects of the treatment on COVID-19 patients.  相似文献   

18.
19.
A new class of microtubule-associated proteins in plants   总被引:4,自引:0,他引:4  
In plants there are three microtubule arrays involved in cellular morphogenesis that have no equivalent in animal cells. In animals, microtubules are decorated by another class of proteins - the structural MAPS - which serve to stabilize microtubules and assist in their organization. The best-studied members of this class in plants are the MAP-65 proteins that can be purified together with plant microtubules after several cycles of polymerization and depolymerization. Here we identify three similar MAP-65 complementary DNAs representing a small gene family named NtMAP65-1, which encode a new set of proteins, collectively called NtMAP65-1. We show that NtMAP65-1 protein localizes to areas of overlapping microtubules, indicating that it may function in the behaviour of antiparallel microtubules in the mitotic spindle and the cytokinetic phragmoplast.  相似文献   

20.
In vivo electrotransfer is a physical method of gene delivery in various tissues and organs, relying on the injection of a plasmid DNA followed by electric pulse delivery. The importance of the association between cell permeabilization and DNA electrophoresis for electrotransfer efficiency has been highlighted. In vivo electrotransfer is of special interest since it is the most efficient non-viral strategy of gene delivery and also because of its low cost, easiness of realization and safety. The potentiality of this technique can be further improved by optimizing plasmid biodistribution in the targeted organ, plasmid structure, and the design of the encoded protein. In particular, we found that plasmids of smaller size were electrotransferred more efficiently than large plasmids. It is also of importance to study and understand kinetic expression of the transgene, which can be very variable, depending on many factors including cellular localization of the protein, physiological activity and regulation. The most widely targeted tissue is skeletal muscle, because this strategy is not only promising for the treatment of muscle disorders, but also for the systemic secretion of therapeutic proteins. Vaccination and oncology gene therapy are also major fields of application of electrotransfer, whereas application to other organs such as liver, brain and cornea are expanding. Many published studies have shown that plasmid electrotransfer can lead to long-lasting therapeutic effects in various pathologies such as cancer, blood disorders, rheumatoid arthritis or muscle ischemia. DNA electrotransfer is also a powerful laboratory tool to study gene function in a given tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号