首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me(4)-BODIPY-8) at the end of C(3)-, C(5)-, C(7)-, or C(9)-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me(4)-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me(4)-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me(4)-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and approximately 506-515 nm) but also showed the absence of the 620-630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me(4)-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.  相似文献   

2.
BODIPY C11 is being used with increasing frequency to quantify lipid oxidation; however, it is not known whether signals from the dye yield accurate information. To determine the quantitative accuracy of signals from this dye we utilized a triple-quadrupole mass spectroscopy method to measure concentrations of 1-stearoyl-2-arachidonyl-sn-glycero-3-phosphocholine (SAPC) as it underwent oxidative damage, and compared these results to fluorescence signals from the dye. Results indicate that BODIPY C11 was significantly more sensitive to oxidative damage than SAPC lipid. As a consequence, BODIPY C11 overreported the extent of oxidative lipid damage, underreported the antioxidant effect of alpha-tocopherol, and exhibited an antioxidant effect of its own. We conclude that BODIPY C11 fluorescence does not yield quantitative information about lipid oxidation, although the dye remains a sensitive indicator of free radical processes that have the potential to oxidize lipids in membranes.  相似文献   

3.
V S Malinin  M E Haque  B R Lentz 《Biochemistry》2001,40(28):8292-8299
A number of fluorescent probes have been used to follow membrane fusion events, particularly intermixing of lipids. None of them is ideal. The most popular pair of probes is NBD-PE and Rh-PE, in which the fluorescent groups are attached to the lipid headgroups, making them sensitive to changes in the surrounding medium. Here we present a new assay for monitoring lipid transfer during membrane fusion using the acyl chain tagged fluorescent probes BODIPY500-PC and BODIPY530-PE. Like the NBD-PE/Rh-PE assay, this assay is based on fluorescence resonance energy transfer (FRET) between the donor, BODIPY500, and the acceptor, BODIPY530. The magnitude of FRET is sensitive to the probe surface concentration, allowing one to detect movement of probes from labeled to unlabeled vesicles during fusion. The high quantum yield of fluorescence, high efficiency of FRET (R(o) is estimated to be approximately 60 A), photostability, and localization in the central hydrophobic region of a bilayer all make this pair of probes quite promising for detecting fusion. We have compared this and two other lipid mixing assays for their abilities to detect the initial events of poly(ethylene glycol) (PEG)-mediated fusion of small unilamellar vesicles (SUVs). We found that the BODIPY500/530 assay showed lipid transfer rates consistent with those obtained using the DPHpPC self-quenching assay, while lipid mixing rates measured with the NBD-PE/Rh-PE RET assay were significantly slower. We speculate that the bulky labeled headgroups of NBD-PE and especially Rh-PE molecules hamper movement of probes through the stalk between fusing vesicles, and thus reduce the apparent rate of lipid mixing.  相似文献   

4.
Hayashibara M  London E 《Biochemistry》2005,44(6):2183-2196
The membrane-inserting T domain of diphtheria toxin aids the low-pH-triggered translocation of the catalytic A chain of the toxin across endosomal membranes. To evaluate the role of the isolated A chain in translocation, the topography of isolated A chain inserted into model membrane vesicles was investigated using a mixture either of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) or of dimyristoleoylphosphatidylcholine (DMoPC) and DOPG. The latter mixture was previously found to promote deep insertion of the T domain. A series of single Cys mutants along the A chain sequence were labeled with bimane or BODIPY groups. After A chain insertion into model membranes, the location of these groups within the lipid bilayer was determined via bimane fluorescence emission lambda(max), binding of externally added anti-BODIPY antibodies, and a novel technique involving the comparison of the quenching of bimane fluorescence by aqueous iodide and membrane-associated 10-doxylnonadecane. The results show that in both DOPC- and DMoPC-containing bilayers, membrane-inserted residues all along the A chain sequence occupy shallow locations that are relatively exposed to the external solution. There were only small differences between A chain topography in the two different types of lipid mixtures. However, the behavior of the A chain in the two different lipid mixtures was distinct in that it strongly oligomerized in DMoPC-containing vesicles as judged by Trp fluorescence. In addition, A chain selectively induced fusion of the DMoPC-containing vesicles, and this may aid oligomerization by increasing the A chain/vesicle ratio. Fusion may also explain why A chain also selectively induced leakage of the contents of DMoPC-containing vesicles. We propose that isolated A chain is unlikely to be inserted in a transmembrane orientation, and thus its interaction with the T domain is likely to be critical for properly orienting the A chain within the bilayer in a fashion that allows translocation.  相似文献   

5.
Summary Differential scanning calorimetry of multilamellar liposomes, interacting with the optical probe Merocyanine 540, yields quantitative information about perturbances of the bilayer structure induced by this dye. At low dye: lipid ratios, the dye perturbs primarily its own microenvironment, which is laterally separated from the unmodified lipid domain and exhibits modified thermotropic properties. A further increase in the dye concentration results in a perturbance of the whole lipid bilayer. The degree of perturbance is sensitive to structural modifications in the head-group region of the lipids. It is concluded that Merocyanine 540 reports in every case, even at infinite dilution, on localized events originating from a perturbed microenvironment.An abstract of this paper was presented at the XI Congress of Biochemistry, Toronto, in July 1979.  相似文献   

6.
This paper describes a microalgal cell lipid fluorescence enhancement method using BODIPY(505/515), which can be used to screen for lipids in wild-type microalgae and to monitor lipid content within microalgae production processes to determine optimal harvesting time. The study was based on four microalgae species (Dunaliella teteriolecta, Tetraselmis suecica, Nannochloropsis oculata, and Nannochloris atomus) selected because of their inherent high lipid content. An extended analysis was carried out with N. oculata due to the depressed fluorescence observed when compared with the other experimental strains. BODIPY(505/515) lipid fluorescence was determined for two solvent pre-treatment methods (DMSO and glycerol) and four staining condition parameters (analysis time, staining temperature, dye concentration, and algal cell concentration). It was found that lipid fluorescence of thick cell-walled microalgae, such as N. oculata, is significantly enhanced by both the pre-treatment methods and staining condition parameters, thereby significantly enhancing lipid fluorescence by ca. 800 times the base autofluorescence. The lipid fluorescence enhancement method provides a quick and simple index for in vivo Flow Cytometry quantification of total lipid contents for purposes of species screening or whole culture monitoring in biofuel-directed microalgae production.  相似文献   

7.
An instrument for optical waveguide lightmode spectroscopy (OWLS) was designed and developed for measurements at different and controlled temperatures in a range of 15 degrees C around room temperature. The instrument allows to scan the waveguide modes at different wavelengths on the same optical chip using different lasers. This instrument was used to monitor DMPC lipid bilayer main phase transition around the critical temperature. The main problem in these experiments is that the OWLS measurements do not give enough information about an optically anisotropic system like a lipid bilayer. Experimental OWLS data at two different wavelengths can however approximately solve the problem. The temperature dependence of the thickness and the refractive indices (ordinary and extraordinary) for the lipid bilayer around the phase transition is presented. (A theoretical derivation of the extraordinary refractive index is given in.)  相似文献   

8.
Second harmonic generation (SHG) was used to study both the adsorption of malachite green (MG), a positively charged organic dye, onto liposomes of different lipid compositions, and the transport kinetics of MG across the liposome bilayer in real time. We found that the dye adsorption increased linearly with the fraction of negatively charged lipids in the bilayer. Similarly, the transport rate constant for crossing the bilayer increased linearly with the fraction of charged lipid in the bilayer.  相似文献   

9.
The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.  相似文献   

10.
A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde concentration in the outer monolayer.  相似文献   

11.
The chronological relation between the establishment of lipid continuity and fusion pore formation has been investigated for fusion of cells expressing hemagglutinin (HA) of influenza virus to planar bilayer membranes. Self-quenching concentrations of lipid dye were placed in the planar membrane to monitor lipid mixing, and time-resolved admittance measurements were used to measure fusion pores. For rhodamine-PE, fusion pores always occurred before a detectable amount of dye moved into an HA-expressing cell. However, with DiI in the planar membrane, the relationship was reversed: the spread of dye preceded formation of small pores. In other words, by using DiI as probe, hemifusion was clearly observed to occur before pore formation. For hemifused cells, a small pore could form and subsequently fully enlarge. In contrast, for cells that express a glycosylphosphatidylinositol-anchored ectodomain of HA, hemifusion occurred, but no fully enlarged pores were observed. Therefore, the transmembrane domain of HA is required for the formation of fully enlarging pores. Thus, with the planar bilayer membranes as target, hemifusion can precede pore formation, and the occurrence of lipid dye spread does not preclude formation of pores that can enlarge fully.  相似文献   

12.
We demonstrate that the ganglioside G(M1) in lipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) exhibits a non-uniform lateral distribution, i.e., enriched regions of GM(1) molecules are formed, which is an argument in favour of self-aggregation of G(M1) being an intrinsic property of G(M1) ganglioside. This was concluded from energy transfer/migration studies of BODIPY-labelled gangliosides by means of time-resolved fluorescence lifetime and depolarization experiments. Three fluorophore-labelled gangliosides were synthesized to include either of two spectroscopically different BODIPY groups. These were specifically localized either in the polar headgroup region or in the non-polar region of the lipid bilayer. An eventual ganglioside-ganglioside affinity/aggregation induced by the BODIPY groups was experimentally excluded, which suggests their use in examining the influence of G(M1) in more complex systems.  相似文献   

13.
A novel protocol has been developed for comparing the structural properties of lipid bilayers determined by simulation with those determined by diffraction experiments, which makes it possible to test critically the ability of molecular dynamics simulations to reproduce experimental data. This model-independent method consists of analyzing data from molecular dynamics bilayer simulations in the same way as experimental data by determining the structure factors of the system and, via Fourier reconstruction, the overall transbilayer scattering-density profiles. Multi-nanosecond molecular dynamics simulations of a dioleoylphosphatidylcholine bilayer at 66% RH (5.4 waters/lipid) were performed in the constant pressure and temperature ensemble using the united-atom GROMACS and the all-atom CHARMM22/27 force fields with the GROMACS and NAMD software packages, respectively. The quality of the simulated bilayer structures was evaluated by comparing simulation with experimental results for bilayer thickness, area/lipid, individual molecular-component distributions, continuous and discrete structure factors, and overall scattering-density profiles. Neither the GROMACS nor the CHARMM22/27 simulations reproduced experimental data within experimental error. The widths of the simulated terminal methyl distributions showed a particularly strong disagreement with the experimentally observed distributions. A comparison of the older CHARMM22 with the newer CHARMM27 force fields shows that significant progress is being made in the development of atomic force fields for describing lipid bilayer systems empirically.  相似文献   

14.
Chlamydomonas sp. ICE-L, isolated from Antarctic coastal marine environments, was selected as a high lipid producer, which may be useful for biodiesel production. The lipophilic fluorescent dye BODIPY505/515 was used to determine the algal lipid content. Lipid bodies stained with BODIPY505/515 have a characteristic green fluorescence, and their volumes were determined using the sphere volume formula. In this study, lipid accumulation by Chlamydomonas ICE-L was analyzed under different cultivation conditions (nitrogen deficiency and UV-B radiation). The results demonstrated that nitrogen deficiency and UV-B radiation could significantly promote the accumulation of lipid content per cell. The highest yields of total lipid content (reaching 84?μL?L?1) were obtained in full Provasoli medium after 12?days of cultivation, but not in the nitrogen-deficient medium. The inoculum used in this experiment was obtained from the late-exponential growth phase. The main reason was that the cell numbers in nitrogen-deficient medium had not increased and total lipid contents were offset by the lower growth rate. Considering the high lipid content in Chlamydomonas sp. ICE-L, this alga might be a promising alternative species for production of microalgal oil for the production of renewable biodiesel in the future.  相似文献   

15.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

16.
Ranall MV  Gabrielli BG  Gonda TJ 《BioTechniques》2011,51(1):35-6, 38-42
Neutral lipid droplets (LDs) are dynamic lipid storage organelles found in all eukaryotic cells from yeast to mammals and higher plants. LDs are important to many physiological processes that include basic cellular maintenance, metabolism, and diverse medical pathologies. LD accumulation has been studied extensively by a range of methods, but particularly by microscopy with several fluorescent dyes extensively used for qualitative and quantitative imaging. Here, we compared established LD stains Nile Red and BODIPY 493/503 to the 4', 6-diamidino-2-phenylindole (DAPI)-range dye 1,6-diphenyl-1,3,5-hexatriene (DPH; excitation/emission λmax=350 nm/420 nm) using high-content image analysis. HeLa cells treated with oleic acid or vehicle were used to compare staining patterns between DPH and Nile Red as well as DPH and the LD protein adipophilin. DPH, Nile Red, and BODIPY 493/503 were compared as assay reagents in oleic acid dose-response experiments. Treatment of MCF-7 cells with sodium butyrate was used as a second cellular system for high-content analysis of LD formation. In this experimental context, we demonstrate the compatibility of DPH with GFP, a technical limitation of Nile Red and BODIPY 493/503 dyes. These data show that DPH has comparable sensitivity and specificity to that of Nile Red. Z'-factor analysis of dose-response experiments indicated that DPH and BODIPY 493/503 are well suited for quantitative analysis of LDs for high-throughput screening (HTS) applications.  相似文献   

17.
The lipid droplet (LD) has become a focus of intense research. Fluorescence labeling is indispensable for the cell biological analysis of the LD, and a lipophilic fluorescence dye, BODIPY 493/503, which emits bright green fluorescence has been used extensively for LD labeling. The dye is convenient for double fluorescence labeling, but we noticed that it emits red fluorescence under certain conditions, which could lead to erroneous interpretations. We propose a protocol to preclude such a possibility.  相似文献   

18.
Lipids containing the dimethyl BODIPY fluorophore are used in cell biology because their fluorescence properties change with fluorophore concentration (C.-S. Chen, O. C. Martin, and R. E. Pagano. 1997. Biophys J. 72:37-50). The miscibility and steady-state fluorescence behavior of one such lipid, 1-palmitoyl-2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (PBPC), have been characterized in mixtures with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC). PBPC packs similarly to phosphatidylcholines having a cis-unsaturated acyl chain and mixes nearly ideally with SOPC, apparently without fluorophore-fluorophore aggregation. Increasing PBPC mole fraction from 0.0 to 1.0 in SOPC membranes changes the emission characteristics of the probe in a continuous manner. Analysis of these changes shows that emission from the excited dimethyl BODIPY monomer self quenches with a critical radius of 25.9 A. Fluorophores sufficiently close (< or =13.7 A) at the time of excitation can form an excited dimer, emission from which depends strongly on total lipid packing density. Overall, the data show that PBPC is a reasonable physical substitute for other phosphatidylcholines in fluid membranes. Knowledge of PBPC fluorescence in lipid monolayers has been exploited to determine the two-dimensional concentration of SOPC in unilamellar, bilayer membranes.  相似文献   

19.
High throughput screening fluorescence polarization assays using G protein-coupled receptors (GPCRs) as targets have been compared using fluorescein and BODIPY TMR-labeled peptides. The red-shifted BODIPY TMR dye exhibits improved assay performance relative to fluorescein due to improvement in both ligand affinity to the GPCRs and assay precision brought about by the higher intensity probe. Furthermore, the red-shifted dye demonstrates an insensitivity to the effects of the highly colored compound tartrazine, which can produce false-negative results for assays conducted with fluorescein as a label.  相似文献   

20.
The influence of tocopherol and its analogue (oxychroman) on the microviscosity of mitochondrial lipids was studied, using spin labels. The viscosity of the lipid bilayer was shown to enhance with the increase in the antioxidant content in the membrane. Small concentrations of alpha-tocopherol (10(-5)-10(-6) mol/l) were shown to increase, while large concentrations (10(-3)-10(-4) mol/l) decreased the fluidity of the lipid bilayer. The influence of alpha-tocopherol on fluidity of the lipid bilayer depending on its concentration could be realized in two ways: by direct influence on the lipid bilayer and via reception. It was shown that alterations in the viscosity of the lipid bilayer depend on chroman cycle of tocopherols, while the temperature of structural transfer and effective energy of activation depend on the lateral phytyl chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号