首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myocardium of the sinus venosus of the dogfish ( Scyliorhinus canicula ) is located between a thick subepicardial collagen-rich layer and a subendocardial network of nerve fibres and ganglion cells. The sinoatrial valve consists of two transversal folds of the cardiac wall which are separated by connective tissue, except in their free margins.
The myocardium of the sinus venosus and the sinusal face of the sinoatrial valve is arranged in bundles which are surrounded by a 40 nm-thick basal lamina. The myocardial cells measure about 7-9 μm in diameter at the nuclear level. Nerve terminals are frequent in the centre of the bundles. Most of the sinusal myocardiocytes have a scarce amount of myofibrils which are randomly orientated. The sarcoplasmic reticulum is relatively well developed and consists of peripheral couplings, subsarcolemmal vesicles, circular and longitudinal tubules. The scarce intercalated discs show only fasciae adhaerentes . Gap junctions, desmosomes or specific granules are not observed in the sinusal myocardiocytes of the dogfish. In contrast, the atrial myocardiocytes are smaller, about 5-6 μm in diameter at the nuclear level. The cytoplasm is denser and the myofibrils are abundant and orientated in parallel directions. Specific granules are present. although scarce. Subsarcolemmal vesicles are less frequent, while the atrial intercalated discs are larger and more abundant than those of the sinus venosus. Neural elements are scarce in the atrium.
The differences observed between sinus venosus and atrium might be related to the morphological criteria to distinguish between the nodal tissue and the working myocardiocytes of higher vertebrates. On the other hand, we think that the connective tissue placed between sinus venom and atrium means that the contraction impulse generated in the sinus venosus must reach the atrium through the free margin of the valve. It might play a role in the sinoatrial valve function.  相似文献   

2.
Summary The wall of the sinus venosus in an elasmobranchian species, Chimaera monstrosa L. is described.Endocardial cells contain numerous large vacuoles, as well as a number of membrane-bounded, moderately electron dense bodies (MDB). Myocardial cells lie closely packed into bundles surrounded by a basal lamina of about 20 nm thickness, and by large amounts of collagen fibres. These cells are connected by desmosomes of 1–2 µm length and with an intermembranous gap of 10–20 nm. Myocardial cells poor in myofibrils are intermingled with cells containing a well developed contractile material. Atrial specific granules are scarce. Vesiculated nerve processes occur at a distance of about 20 nm from the myocardial sarcolemma. Myocardial cells of the sino-atrial junction appear ultrastructurally similar to those located elsewhere in the sinus venosus. Epicardial cells contain large vacuoles, and have fibrecoated protrusions extending into the pericardial space.The possibility of pacemaker activity in the elasmobranchian sinus venosus is discussed.  相似文献   

3.
The concentrations of catecholamines in the heart chambers of elasmobranchs were measured by the fluorimetric method of Bertler et al. (1958). Noradrenaline (NA) can be detected in all the chambers, but the sinus venosus is by far the richest in NA. This can either be due to the presence of storage sites for this amine in the sinus wall, or to a transport of amine to the sinus venosus from the anterior chromaffin bodies. The sinus wall contains large numbers of "granule containing cells" and axon-like processes, both with numerous dense-core vesicles of about 1800 A diameter. The dense-core vesicles contain a uranophilic matrix indicating the presence of protein, phospholipids and/or nucleic acid. The reactions failed to demonstrate amine, which may be due to a loss of amine by diffusion, to a relatively low intravesicular amine concentration, or, to the absence of amines in these granule-containing cells and processes. Heavy accumulations of granule-containing processes occur in the subendothelial area. The endothelium contains fenestrae and pores through which granule-containing fibres protrude into the venous cavity. Granule-containing cells are innervated by presumed cholinergic nerve endings. It is suggested that the granule-containing cells and fibres belong to the neurosecretory system with a cholinergic input, releasing the contents of the dense-core vesicles into the blood stream at the level of the venous cavity.  相似文献   

4.
The development of the epicardium has been described in mammals, including man, birds and amphibians. However, there is no information concerning this morphogenetic process in fishes. A study carried out in embryos of the dogfish ( Scyliorhinus canicula ) showed that, in this elasmobranch species, the precursors of the epicardium originate from two mesothelial anlagen, the right and left, that initially lie at the ventrolateral parts of the liver. These two anlagen, which will be referred to as the proepicardium, later shift to the right and left parts of the pericardial aspect of the transverse septum. The proepicardium comprises numerous spheric, smooth-contoured cells and a relatively small amount of extracellular matrix. The proepicardium is not covered by an epithelial layer.
Cells detaching from the proepicardium adhere to the surface of the heart and develop into epicardial cells. They firstly ensheathe the atrioventricular groove as well as the dorsal and lateral aspects of the ventricle, and the ventral and lateral aspects of the atrium. Both the sinus venosus and conus arteriosus become lined later.
In spite of the phylogenetic distance between elasmobranchs and mammals, the mechanism by which the epicardium develops is similar in both groups. This similarity relies principally on the arrangement and location of the proepicardium and the way in which the epicardial precursors reach and invest the heart.  相似文献   

5.
A scanning electron microscopy study showed the presence of large pores in the endocardium of the sinus venosus of the dogfish Scyliorhinus canicula. The pores were always found on large bundles which protruded into the cardiac lumen. The bundles were mainly constituted of granule-containing nerve fibres. The average diameter of the pores was 3.2 μm (range=1.5-5.0μm), and their density, was about 822 pores mm−2. Endocardial pores were absent in other areas of the sinus venosus, but they were observed on the little bundles of granulated nerve fibres which were scattered throughout the atrium. The existence of large endocardial pores associated with bundles of granulated nerve fibres supports the hypothesis for the neuroendocrine nature of the elasmobranch sinus venosus wall.  相似文献   

6.
The topographical characteristics of epicardial and myocardial cells of the embryonic chick heart are sufficiently distinct to enable reproducible identification by scanning electron microscopy. This made it possible to observe the development of the epicardial investment on the myocardial wall. The epicardial cells migrate from the mesothelium of the sinus venosus, cover first circularly the ventricular wall, and then extend cranially and caudally to ensheath the entire heart surface. Our observation argues against the generally accepted concept that the epicardium is a derivative of the outer myocardial layer. We strongly support the suggestion that the term “epimyocardium” is a misnomer [Manasek, F. J. (1969). J. Embryol. Exp. Morphol.22, 333–348].  相似文献   

7.
Information about embryonic development of coronary endothelium is the main clue for the creation of new methods in tissue engineering for treatment of ischemic heart diseases. The purpose of the research was to describe human coronary vessels development on early stages of the prenatal ontogenesis. The first step in human coronary vessels development is the formation of endothelium de novo by transformation of some epicardial and, possibly, endocardial cells. The next step is the ingrowth of sinus venosus endothelium in subepicardium over ventricles and atria, which gives rise to the coronary vessels. Only after 7 days does the primitive coronary plexus of the heart communicate with aorta (third step). During this period, some subepicardial vessels invade myocardium and some intramyocardial vessels contact with the heart cavity. Such intercommunications could help in regulation of blood circulation in primitive coronary plexus before establishment of effective contacts between arterial and venous vessels—excess of blood could be discharged directly into the heart cavity. Additional population of CD34+ cells were revealed inside condensed mesenchyme of the conotruncus; it participates in the formation of vasa vasorum in the aorta. Epicardium and sinus venosus generate endothelium of coronary vessels by neovasculo- and angiogenesis, respectively. During a week after ingrowth of vessels from SV and before their ingrowth to the aorta, ventriculo-coronary communications could be found in the heart.  相似文献   

8.
This study demonstrates that the silver technique of Grimelius (Acta Soc. Med. Ups. 73:243–270, 68) is ideally suited for the study of cardiovascular chromaffin cells in lampreys. This method showed that in the Southern Hemisphere lamprey, Geotria australis, the distribution of chromaffin cells differs from that described for holarctic species. In G. australis, the chromaffin cells are found mainly in the sinus venosus, atrium, and nearby regions of the cardinal and jugular veins, and they are absent from the ventricle and conus arteriosus. The location and discreteness of the large accumulation of chromaffin cells in the lateral wall of the right posterior cardinal vein of adults resemble those of the precardiac axillary bodies of elasmobranchs. Chromaffin cells become more abundant during metamorphosis. The possible phylogenetic and functional significance of lamprey chromaffin cells is briefly discussed.  相似文献   

9.
The sinus venosus of the elasmobranch heart is characterized by the presence of large bundles of unmyelinated nerve fibres that bulge into the cardiac lumen, below the endocardium. In the dogfish (Scyliorhinus canicula), these fibres contain numerous dense-core membrane-bounded granules of about 200 nm in diameter. Most intramural ganglion cells of the sinus venosus also show densely packed granules similar to those found in the subendocardial fibres. We have observed strong substance-P-like immunoreactivity in the large fibre bundles and in the perikarya of the ganglion cells. Preabsorption of the antisera with fragment 7–11 of substance P has shown that the antisera recognize the tachykinin canonic sequence. Our findings suggest that an undetermined tachykinin is secreted in the elasmobranch heart, and that it is probably released into the blood stream in the context of a little-known neuroendocrine system.  相似文献   

10.
The dorsal hemal vessel in Parastichopus consists of three distinct layers: An outer flagellated epithelium, an intermediate circular muscle layer and an inner connective tissue layer which nearly fills the lumen. Between the outer and intermediate layer runs strands of nerve fibers. Each coelomic epithelial cell has one flagellum and some microvilli. It contains a number of different vacuoles and a few bundles of tonofilaments. One special type of vacuole which contains well organized myofilaments is described. Each muscle cell contains one myofibril of a non-striated type consisting of thick and thin filaments and no dense bodies. The sarcoplasmic reticulum is poorly developed, but peripheral coupling are frequently found. The muscle cells in the dorsal hemal vessel of Parastichopus are compared with other muscles in echinoderms and muscle types described in other phyla.  相似文献   

11.
12.
Summary Immunohistochemical properties of the terminal nerve network in the rat heart were assessed by use of the elution-restaining method. The colocalization of the enzymes involved in catecholamine synthesis (tyrosine hydroxylase — TH, dopamine--hydroxylase — DBH) as well as the respective distributions of the neuropeptides associated with the adrenergic nervous system (neuropeptide tyrosine — NPY, C-terminal flanking peptide of neuropeptide Y — C-PON) were studied in series of serial sections throughout the interatrial septum and the atrioventricular junction. Our data suggest that ganglion cells of sulcus terminalis as well as the epicardial ganglia enclosed between the superior vena cava and ascending aorta are VIP- and TH-negative, but neuropeptide Y- and DBH-immunoreactive. They give rise to three intraseptal nerves directed towards the specialised structures of the atrioventricular junction. These nerve fascicles contain abundant, thick TH-immunoreactive nerve fibres and scarce, thin NPY- and DBH-immunoreactive fibres. The cell bodies of the intramural ganglion cells localized between the right and left branches of the bundle of His (Moravec and Moravec 1984) are strongly TH- and DBH-immunoreactive. They are innervated by thick nerve fibres having the same immunohistochemical properties (NPY- and DBH-immunoreactivities) as those of a subpopulation of the epicardial ganglion cells and seem to supply some of the TH-immunoreactive nerve fibres directed via the intraseptal nerves to the epicardial ganglia. The existence of a multicomponent nerve network, characterized by a reciprocal innervation of the sinus node and atrioventricular node areas, is suggested by our immunohistochemical data.  相似文献   

13.
K Amako  Y Meno    A Takade 《Journal of bacteriology》1988,170(10):4960-4962
The fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli were determined by the rapid-freezing technique. The capsular layer was seen as a densely packed accumulation of fine fibers. The thickness of the capsule was approximately 160 nm in K. pneumoniae and less than 10 nm in E. coli K1. Two layers were observed in the Klebsiella capsule in which the arrangements of the fibers were different. The inner layer of the capsule was formed by a palisade of thick and dense bundles of the fibers standing at right angles on the surface of the outer membrane. In the outer layer these thick bundles of fibers loosened into fine fibers which spread over the bacterial surface, forming a fine network structure.  相似文献   

14.
The general organization of the male genital system, the spermatogenesis and the sperm structure of the proturan Acerella muscorum have been described. At the apex of testis apical huge cells are present; their cytoplasm contains a conventional centriole, a large amount of dense material and several less electron-dense masses surrounded by mitochondria. Spermatocytes have normal centrioles and are interconnected by cytoplasmic bridges. Such bridges seem to be absent between spermatid cells and justify the lack of synchronization of cell maturation. Spermatids are almost globular cells with a spheroidal nucleus and a large mass of dense material corresponding to the centriole adjunct. Within this mass a centriole is preserved. Mitochondria of normal structure are located between the nucleus and the plasma membrane. The spermatids are surrounded by a thick membrane. No flagellar structure is formed. Sperm have a compact spheroidal nucleus, a large cap of centriole adjunct material within which a centriole is still visible. A layer of mitochondria is located over the nucleus. The cytoplasm is reduced in comparison to spermatids; many dense bodies are interspersed with sperm in the testicular lumen. The sperm are small, immotile cells of about 2.5-3 μm in diameter.  相似文献   

15.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

16.
Males of the southern hemisphere lamprey Geotria australis develop a large gular pouch during sexual maturation. The wall of this pouch contains (I) an epidermis comprising typical lamprey epidermal cells, (II) a thick dermis consisting of layers of collagen fibres, with intervening oxytalan fibres, and a vascular network, and (III) a hypodermis. The hypodermis contains active fibroblasts embedded in an extracellular matrix, comprising collagen fibrils, some of which form dense bundles, together with oxytalan fibres and an amorphous material that contains glycosaminoglycans. The hypodermis also contains arteries, which are innervated and confluent with a large anastomosing system of sinuses. Since these sinuses open at intervals into the large central cavity of the pouch, it is proposed that, at maturity, they discharge blood into the central lumen of the pouch, thereby causing the pouch to become distended. The degree of such distension would be regulated by the limited elasticity of the dermal collagen fibres. The dermis is thickest in those regions where the pouch is most susceptible to abrasion. The Weibel–Palade bodies, which are abundant in the sinus endothelia, may facilitate tissue repair where neccessary. The gular pouch is thus a specialised structure, which may play a role in courtship or the spawning act.  相似文献   

17.
The sequence of differentiation of the epidermis of scutes during embryogenesis in the tortoise Testudo hermanni was studied using autoradiography, electron microscopy and immunocytochemistry. The study was mainly conducted on the epidermis of the carapace, plastron and nail. Epidermal differentiation resembles that described for other reptiles, and the embryonic epidermis is composed of numerous cell layers. In the early stages of differentiation of the carapacial ridge, cytoplasmic blebs of epidermal cells are in direct contact with the extracellular matrix and mesenchymal cells. The influence of the dermis on the formation of the beta‐layer is discussed. The dermis becomes rich in collagen bundles at later stages of development. The embryonic epidermis is formed by a flat periderm and four to six layers of subperidermal cells, storing 40–70‐nm‐thick coarse filaments that may represent interkeratin or matrix material. Beta‐keratin is associated with the coarse filaments, suggesting that the protein may be polymerized on their surface. The presence of beta‐keratin in embryonic epidermis suggests that this keratin might have been produced at the beginning of chelonian evolution. The embryonic epidermis of the scutes is lost around hatching and leaves underneath the definitive corneous beta‐layer. Beneath the embryonic epidermis, cells that accumulate typical large bundles of beta‐keratin appear at stage 23 and at hatching a compact beta‐layer is present. The differentiation of these cells shows the progressive replacement of alpha‐keratin bundles with bundles immunolabelled for beta‐keratin. The nucleus is degraded and electron‐dense nuclear material mixes with beta‐keratin. In general, changes in tortoise skin when approaching terrestrial life resemble those of other reptiles. Lepidosaurian reptiles form an embryonic shedding layer and crocodilians have a thin embryonic epidermis that is rapidly lost near hacthing. Chelonians have a thicker embryonic epidermis that accumulates beta‐keratin, a protein later used to make a thick corneous layer.  相似文献   

18.
Summary A study has been made of catecholamine stores that may be involved in cardiac regulation in the shark Heterodontus portusjacksoni. The anatomy of the anterior chromaffin bodies associated with the sympathetic chain is described. A fluoresent histochemical study shows that the chromaffin cells contain a monoamine, probably noradrenaline. The chromaffin cells have a fine structure comparable to that of chromaffin cells in other vertebrates. The heart is devoid of histochemically-demonstrable chromaffin cells or adrenergic nerve fibres, with the exception of a very sparse adrenergic innervation of the sinus venosus. It is argued that adrenergic control of the heart in Heterodontus might occur via amines released from the anterior chromaffin masses into the blood in the posterior cardinal sinus, which is then aspirated directly into the heart.  相似文献   

19.
We examined the fine structure of the baroreceptors and the adrenergic innervation of the guinea-pig carotid sinus. The tunica adventitia contained many nerve bundles whose perineuria enclosed unmyelinated nerve fibers, alone or together with myelinated nerve fibers. Baroreceptors, which lay close to elastic and collagen fibers in the adventitia and media, were surrounded by “terminal” cells with ultrastructural features characteristic of Schwann cells and contained inclusions of various types. Morphologic features of the baroreceptors included densely packed mitochondria, osmiophilic lamellated and homogeneous bodies, clear and granular vesicles, lamellar systems, glycogen granules, neurofilaments, neurotubuli, and vacuolated mitochondria. In animals that had been treated with 6-hydroxydopamine, occasional electrondense endings (or fibers) were observed in the adventitial layer. The baroreceptors in the guinea-pig carotid sinus appear to have most of the morphologic features reported for other species.  相似文献   

20.
The nephridial muscle layer of Phascolosoma granulatum consists of a network of longitudinal and circular cells separated by connective tissue matrix. The muscle fibers are densely packed with thick and thin myofilaments, among which are scattered cytoplasmic dense bodies. The nucleus and noncontractile cytoplasmic organelles occupy a lateral projection from the contractile portion of the fiber. Cytoplasmic dense bodies are the result of a clustering of an indeterminate number of the thin actin filaments that fill the cytoplasm between thick filaments. Attached to the cytoplasmic face of the cell membrane are membrane-associated electron-dense plaques. These sites are linked to the contractile myofilaments by narrow filamentous bridges. Extracellular narrow filaments extend from these plaques to collagen fibers of the connective tissue matrix. Differences in length of the dense plaques may be related to differences in thick myofilament diameter in three types of muscle fiber, types A, B and C, statistically distinguished by mean fiber size differences. The plaques may serve as connecting links for the transmission of tension from contractile units to the connective tissue of the muscle layer. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号