首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
W. Stephan  V. S. Rodriguez  B. Zhou    J. Parsch 《Genetics》1994,138(1):135-143
Three distinctly different alleles of the metallothionein gene Mtn have been identified in natural Drosophila melanogaster populations: Mtn(.3), Mtn(1), and Dp(Mtn(1)), where the latter designates a tandem duplication of Mtn(1). In Drosophila simulans, only Mtn(.3)-type alleles have been found. It has been suggested that Mtn(.3) is the ancestral allele and demonstrated that a presumed two-step transition from Mtn(.3) to Mtn(1) to Dp(Mtn(1)) is accompanied by an approximate 5-fold increase in RNA levels. We analyzed the evolutionary genetics of the Mtn locus of Drosophila ananassae, a distant relative of D. melanogaster and D. simulans within the melanogaster species group. The Mtn gene of D. ananassae is most similar to Mtn(.3). (i) it is identical with Mtn(.3) at the amino acid level, but differs from Mtn(1) in its terminal codon; (ii) its 3'' UTR contains a characteristic extra DNA segment of about 50 bp which is present in Mtn(.3), but lacking in Mtn(1); (iii) duplications of Mtn were not found in a worldwide sample of 110 wild D. ananassae chromosomes. However, the intron of the Mtn gene in D. ananassae is only 69 bp long, whereas the length of the Mtn(.3) and Mtn(1) introns is 265 bp; and it lacks a polypyrimidine stretch upstream of the 3'' splice site in contrast to the much greater pyrimidine-richness found in the Mtn(.3) and Mtn(1) introns. A short intron (67 bp) was also identified in a D. pseudoobscura Mtn allele, suggesting that the short intron is the ancestral form and that the transition from the short to the long intron occurred within the melanogaster species group. We discuss the significance of this observation with regard to the recently proposed classification of D. melanogaster introns into two groups: short introns (<90 bp) which tend to lack polypyrimidine stretches, and longer ones which have strong 3'' splice signals similar to mammalian introns. A database search revealed that this length dimorphism is an evolutionarily conserved feature of Drosophila introns; transitions from one size class to the other appear to be rare between closely related species (e.g., within the melanogaster subgroup).  相似文献   

3.
4.
5.
6.
7.
8.
Drosophila focal adhesion kinase (Dfak) gene is a single-copy nuclear gene. Previous study revealed that Drosophila melanogaster and Drosophila simulans had lost an intron precisely within the tyrosine kinase (TyK) domain of this gene. However, this did not happen in several other Drosophila species, including Drosophila elegans, Drosophila ficusphila, Drosophila biarmipes, Drosophila jambulina, Drosophila prostipennis, Drosophila takahashii, and Drosophila pseudoobscura. In the current study, homologous sequences of Drosophila sechellia, Drosophila mauritiana, Drosophila yakuba, Drosophila teissieri, Drosophila santomea, and Drosophila erecta were amplified by polymerase chain reaction, and further sequencing analysis indicated that these species were missing a TyK domain intron, indicating they were closely related. The relationship of the D. melanogaster species group was reconstructed using TyK domain nucleotide sequences. The resulting phylogenetic tree revealed that these 8 species were the most related species in the melanogaster group. These results strongly support previously proposed classifications based on morphological and molecular data.  相似文献   

9.
10.
11.
Insertional mutagenesis screens have provided thousands of mutant alleles for analysing genes of varied functions in Drosophila melanogaster. We here document mechanisms of insertional mutagenesis by a LINE element, the I factor, by determining the molecular structure of RNAs produced from two alleles of the white gene of D.melanogaster, wIR1 and wIR6. These alleles result from insertion of the I factor into introns of the gene. We show that sequences present within the element direct aberrant splicing and termination events. When the I factor is inserted within the white first intron it may lead to the use of a cryptic 3' splice site which does not contain the dinucleotide AG. This splicing gives rise to a chimeric messenger RNA whose synthesis is controlled differently in tissues where the mutated gene is expressed. When the I factor is inserted within the white last intron it induces synthesis of truncated mRNAs. These results provide, for the first time, mechanisms for I factor insertional mutagenesis. They are discussed in the more general context of RNA processing in Drosophila and the evolution of eukaryotic gene introns.  相似文献   

12.
13.
14.
In Drosophila melanogaster there are two genes which encode the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Gapdh-43E and Gapdh-13F. We have shown that Gapdh-43E codes for the GAPDH subunit with an apparently larger molecular weight while Gapdh-13F encodes the GAPDH subunit having an apparently smaller molecular weight. Immunoblots of sodium dodecyl sulfate gels were used to survey species from throughout the genus and results indicated that two classes of GAPDH subunits are present only in Drosophila species of the melanogaster and takahashi subgroups of the melanogaster group. Only the smaller subunit is found in species of the obscura group while all other species have only a large subunit. Drosophila hydei was analyzed at the DNA level as a representative species of the subgenus Drosophila. The genome of this species has a single Gapdh gene which is localized at a cytogenetic position likely to be homologous to Gapdh-43 E of D. melanogaster. Comparison of its sequence with the sequence of the D. melanogaster Gapdh genes indicates that the two genes of D. melanogaster are more similar to one another than either is to the gene from D. hydei. The Gapdh gene from D. hydei contains an intron following codon 29. Neither Gapdh gene of D. melanogaster has an intron within the coding region. Southern blots of genomic DNA were used to determine which species have duplicate Gapdh genomic sequences. Gene amplification was used to determine which species have a Gapdh gene that is interrupted by an intron. Species of the subgenus Drosophila have a single Gapdh gene with an intron. Species of the willistoni and saltans groups have a single Gapdh gene that does not contain an intron.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
We have isolated four segments of Drosophila melanogaster DNA that hybridize to homologous initiator tRNAMet. Three of the cloned fragments contain initiator tRNA genes, each of which can be transcribed in vitro. The fourth clone, pPW568, contains an initiator tRNA pseudogene which is not transcribed in vitro by RNA polymerase III. The pseudogene is contained in a 1.15 kb DNA fragment. This fragment has the characteristics of dispersed repetitive DNA and hybridizes in situ to at least 30 sites in the Drosophila genome. The arrangement of the initiator tRNA genes we have isolated, is different to that of other Drosophila tRNA gene families. The initiator tRNA genes are not clustered nor intermingled with other tRNA genes. They occur as single copies within an approximately 415-bp repeat segment, which is separated from other initiator tRNA genes by a mean distance of 17 kb. In situ hybridization to polytene chromosomes localizes these genes to the 61D region of the Drosophila genome. Hybridization analysis of genomic DNA indicates the presence of 8-9 non-allelic initiator tRNA genes in Drosophila melanogaster.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号