共查询到20条相似文献,搜索用时 15 毫秒
1.
Maeyama J Isaka M Yasuda Y Matano K Kozuka S Taniguchi T Ohkuma K Tochikubo K Goto N 《Microbiology and immunology》2001,45(2):111-117
We attempted to clarify the mechanism of the mucosal adjuvanticity of recombinant cholera toxin B subunit (rCTB), which is inherently uncontaminated with the holotoxin produced by Bacillus brevis and has a powerful mucosal adjuvant activity, on cytokine responses compared with that of cholera toxin (CT). rCTB had no ability to stimulate cyclic AMP formation in mouse peritoneal macrophages (Mphi). Cytokine production by non-immunized Mphi cultured with rCTB or CT and by the spleen cells of mice co-immunized intranasally with ovalbumin (OVA) and rCTB or CT was examined. rCTB alone did not induce interleukin (IL)-1alpha/beta or IL-6 production by Mphi, but combination of rCTB with lipopolysaccharide (LPS) enhanced both IL-1alpha/beta production. Conversely, CT plus LPS suppressed IL-1alpha/beta production more than LPS alone. Both rCTB and CT suppressed IL-12 secretion induced by interferon gamma (IFN gamma) plus LPS. IL-2, IL-4, IL-5, and IL-10 were secreted by mouse spleen cells restimulated with OVA after intranasal co-administration of OVA together with rCTB, and in response to CT, the same cytokines were secreted. The different effect of rCTB on Mphi from that of CT may mean a difference between the mechanisms of rCTB and CT during the early stage of an immune response. 相似文献
2.
3.
Maeyama J Isaka M Yasuda Y Matano K Morokuma K Ohkuma K Tochikubo K Yamamoto S Goto N 《Microbiology and immunology》2004,48(6):457-463
Recombinant cholera toxin B subunit (rCTB) is a safe and potent mucosal adjuvant. To gain insight into the mechanism underlying the adjuvant effect of rCTB, the effects of rCTB on cell-mediated immune responses of mice and guinea pigs were examined after intranasal administration of Mycobacterium bovis -bacillus Calmette-Guérin (BCG) with and without rCTB. Delayed-type hypersensitivity, for skin reactions in guinea pigs and for footpad swelling reactions in mice, to purified protein derivative (PPD) were enhanced by intranasal co-administration of BCG and rCTB, as compared to giving BCG alone to these animals. Moreover, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma production of spleen cells and antigen specific spleen cell proliferation, stimulated with PPD, were enhanced in the presence of rCTB. These results strongly suggest that rCTB enhances cellular as well as humoral immune responses. 相似文献
4.
5.
6.
7.
8.
Isaka M Zhao Y Nobusawa E Nakajima S Nakajima K Yasuda Y Matsui H Hasegawa T Maeyama J Morokuma K Ohkuma K Tochikubo K 《Microbiology and immunology》2008,52(2):55-63
To develop an efficient nasal influenza vaccine, influenza A and B virus HA with rCTB as a mucosal adjuvant were administered to mice intranasally. Serum anti-HA IgG and IgA antibody responses for both HA vaccines were significantly increased in the presence of rCTB. Higher HI and neutralizing antibody titers and higher mucosal IgA antibody responses in the respiratory tract were detected when rCTB was added than without rCTB. When mice were immunized with HA vaccine with or without rCTB and challenged by intranasal administration of mouse-adapted pathogenic influenza A virus, all mice immunized with HA plus rCTB survived for seven days without any inflammatory changes in the lungs, while not all the mice immunized with HA without rCTB survived, and all of them had lung consolidations. These results demonstrate that intranasal co-administration of rCTB as a mucosal adjuvant with influenza virus HA is necessary not only for the induction of systemic and mucosal HA antibodies, but also for the protection of mice from morbidity and mortality resulting from virus infection. 相似文献
9.
10.
S Spiegel 《Journal of cellular biochemistry》1990,42(3):143-152
The use of the B subunit of cholera toxin, a protein that binds specifically to ganglioside GM1, has provided a new paradigm for studying physiological functions of ganglioside GM1. The B subunit inhibited the growth of rat glioma C6 cells that had been pretreated with ganglioside GM1. In some preparations of the B subunit, the inhibition was independent of adenylate cyclase activation and was due to the binding of the B subunit to ganglioside GM1 inserted onto the cell surface. However, in other preparations of the B subunit, there was an additional inhibitory effect due to small contaminations with the A subunit, which caused increases in intracellular cyclic adenosine monophosphate (cAMP) levels and concomitant growth inhibition. This vanishingly small contamination with the A subunit could not be detected by conventional protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis but could be measured utilizing a sensitive adenylate cyclase activation assay. Thus caution must be used to ensure that any biological effects of the B subunit are not due to contaminating A subunit and are due solely to the binding of the B subunit to ganglioside GM1 exposed on the cell surface. This is especially important in cyclic nucleotide-sensitive systems. 相似文献
11.
Adam W. Dalziel Gert Lipka Babur Z. Chowdhry Julian M. Sturtevant David E. Schafer 《Molecular and cellular biochemistry》1984,63(1):83-91
Summary The B, or binding, subunit of cholera enterotoxin forms a pentameric ring structure in the intact toxin, and also when the subunit is isolated from the A subunit. The thermal denaturation of the B subunit ring was examined by differential scanning calorimetry in the presence and absence of ganglioside GM1, its natural receptor. In the absence of ganglioside an irreversible endotherm was observed with maximal excess apparent heat capacity, Cmax, at 74.6° C. When the ganglioside was added in increasing amounts, multiple transitions were observed at higher temperatures, the most prominent having a Cmax at 90.8° C. At high ganglioside concentrations, the 74.6° C transition was not observed. In addition to the thermodynamic results a model is proposed for the interaction of GM1 and B subunit pentamer. This model is derived independently of the calorimetric results (but is consistent with such data) and is based upon considerations of the geometry of the GM1 micelle-B subunit pentamer.Abbreviations Mr
molecular weight in daltons
- GM1
H3Neu-AcGgOse4Cer* = Gall 3Ga1NAc1 4Gal-[3 - 2NeuAc]1 4Glc1 1Cer (asterisked form follows the recommendations of the IUPACIUB Commission on Biochemical Nomenclature, Ref. 3)
- R
molar ratio of GM1 to B monomer
- DSC
differential scanning calorimetry
- Cmax
excess apparent heat capacity
- Cmax
maximal value of Cex
- tm
temperature (° C) at Cex = Cmax
- t1/2
peak width in °C at Cex = Cmax/2
- Hcal
calorimetric enthalpy
- C
p
d
van't Hoff enthalpy
- C
p
d
change in specific heat accompanying denaturation 相似文献
12.
Summary The fluorescent anionic dye, bisoxonol, and flow cytometry have been used to monitor changes in the membrane potential of rat thymocytes exposed to the B subunit of cholera toxin. The B subunit induced a rapid hyperpolarization, which was due to activation of a Ca2+-sensitive K+ channel. Reduction of extracellular Ca2+ to <1 m by the addition of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid immediately abolished the hyperpolarization caused by the B subunit. Cells treated with quinine and tetraethylammonium lost their ability to respond to the B subunit, whereas 4-aminopyridine did not have any effect. Thus, calcium-sensitive and not voltage-gated K+ channels appeared to be responsible for the hyperpolarization. The results of ion substitution experiments indicated that extracellular Na+ was not essential for changes in membrane potential. Further studies with ouabain, amiloride and furosemide demonstrated that electrogenic Na+/K+ ATPase, Na+/H+ antiporter and Na+/K+/Cl– cotransporter, respectively, were not involved in the hyperpolarization process induced by the B subunit. Thus, crosslinking of several molecules of ganglioside GM1 on the cell surface of rat thymocytes by the pentavalent B subunit of cholera toxin modulated plasma membrane permeability to K+ by triggering the opening of Ca2+-sensitive K+ channels. A role for gangliosides in regulating ion permeability would have important implications for the function of gangliosides in various cellular phenomena. 相似文献
13.
ARAKAWA TAKESHI CHONG DANIEL K.X. LAWRENCE MERRITT J. LANGRIDGE WILLIAM H.R. 《Transgenic research》1997,6(6):403-413
A gene encoding the cholera toxin B subunit protein (CTB), fused to an endoplasmic reticulum (ER) retention signal (SEKDEL) was inserted adjacent to the bi-directional mannopine synthase P2 promoter in a plant expression vector containing a bacterial luciferase AB fusion gene (luxF) linked to the P1 promoter. Potato leaf explants were transformed by Agrobacterium tumefaciens carrying the vector and kanamycin-resistant plants were regenerated. The CTB-SEKDEL fusion gene was identified in the genomic DNA of bioluminescent plants by polymerase chain reaction amplification. Immunoblot analysis indicated that plant-derived CTB protein was antigenically indistinguishable from bacterial CTB protein, and that oligomeric CTB molecules (Mr 50 kDa) were the dominant molecular species isolated from transgenic potato leaf and tuber tissues. Similar to bacterial CTB, plant-synthesized CTB dissociated into monomers (Mr 15 kDa) during heat or acid treatment. The maximum amount of CTB protein detected in auxin-induced transgenic potato leaf and tuber tissues was approximately 0.3% of total soluble plant protein. Enzyme-linked immunosorbent assay methods indicated that plant-synthesized CTB protein bound specifically to GM1-ganglioside, the natural membrane receptor of cholera toxin. In the presence of the SEKDEL signal, CTB protein accumulates in potato tissues and is assembled into an oligomeric form that retains native biochemical and immunological properties. The expression of oligomeric CTB protein with immunological and biochemical properties identical to native CTB protein in edible plants opens the way for preparation of inexpensive food plant-based oral vaccines for protection against cholera and other pathogens in endemic areas throughout the world 相似文献
14.
15.
Rhie GE Jung HM Park J Kim BS Mekalanos JJ 《FEMS immunology and medical microbiology》2008,52(1):23-28
The most widely used oral whole-cell-recombinant B subunit cholera vaccine contains the nontoxic cholera toxin B subunit (CTXB) and either heat- or formalin-killed Vibrio cholerae O1 strains. Vibrio cholerae O1 strains in the vaccine provide antibacterial immunity, and CTXB contributes to the vaccine's efficacy by stimulating production of anti-CTXB antibody. Various attempts have been made to increase CTXB production. In this study, the mariner-FRT transposon delivery system developed by Chiang and Mekalanos was used to place the ctxB gene under the control of a strong chromosomal promoter in a nontoxigenic V. cholerae El Tor strain, M7922. The expression level of CTXB in transposon insertion mutant clones was screened by ganglioside-dependent enzyme-linked immunosorbent assay. Among CTXB-producing V. cholerae clones that were isolated, M7922-C1 produced the highest amount of CTXB (3.17+/-1.69 microg mL(-1)). M7922-C1 harbors a single insertion of ctxB into VC0972, which encodes a putative porin protein. Although the level of CTXB expression in this strain was not exceptionally high, this study indicates the possibility of using this delivery system to construct vaccine strains that overexpress specific antigens. 相似文献
16.
Isomura I Yasuda Y Tsujimura K Takahashi T Tochikubo K Morita A 《Microbiology and immunology》2005,49(1):79-87
Activation of dendritic cells (DC) is crucial for priming of cytotoxic T lymphocytes (CTL), which have a critical role in tumor immunity, and it is considered that adjuvants are necessary for activation of DC and for enhancement of cellular immunity. In this study, we examined an adjuvant capacity of recombinant cholera toxin B subunit (rCTB), which is non-toxic subunit of cholera toxin, on maturation of murine splenic DC. After the in vitro incubation of DC with rCTB, the expression of MHC class II and B7-2 on DC was upregulated and the secretion of IL-12 from DC was enhanced. In addition, larger DC with longer dendrites were observed. These data suggest that rCTB induced DC maturation. Subsequently, we examined the induction of tumor immunity by rCTB-treated DC by employing Meth A tumor cells in mice. Pretreatment with subcutaneous injection of rCTB-treated DC pulsed with Meth A tumor lysate inhibited the growth of the tumor cells depending on the number of DC. Moreover, intratumoral injection of rCTB-treated DC pulsed with tumor lysate had therapeutic effect against established Meth A tumor. Immunization with DC activated by rCTB and the tumor lysate increased number of CTL precursor recognizing Meth A tumor. The antitumor immune response was significantly inhibited in CD8+ T cell-depleted mice, although substantial antitumor effect was observed in CD4+ T cell-depleted mice. These results indicated that rCTB acts as an adjuvant to enhance antitumor immunity through DC maturation and that CD8+ T cells play a dominant role in the tumor immunity. Being considered to be safe, rCTB may be useful as an effective adjuvant to raise immunity for a tumor in clinical application. 相似文献
17.
Akira Ichikawa Yoshinori Katakura Kiichiro Teruya Shuichi Hashizume Sanetaka Shirahata 《Cytotechnology》1999,31(1-2):133-141
In vitro immunization (IVI) techniques have a great potential in the production of human monoclonal antibodies (MAbs) against
various antigens. An IVI method of human peripheral blood lymphocytes (PBL) has been developed with a human lung adenocarcinoma
cell line in our laboratory. Although several cancer specific human MAbs were successfully generated by using this IVI method,
it was not available for soluble antigens, which prompted us to improve the method for generation of human MAbs against soluble
antigens. IVI with soluble antigens was effectively caused by the addition of muramyl dipeptides, interleukin-2 and interleukin-4.
It was found that the difference of sensitivity of lymphocytes depending upon donors could be overcome by finding the optimal
concentrations of IL-2 and IL-4. IVI of human PBL was performed with cholera toxin B subunit (CTB) and the immunized B cells
were transformed by Epstein-Barr virus. Anti-CTB antibody was detected using an indirect ELISA. B cells producing anti-CTB
antibodies were directly cloned by a soft agar cloning method.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
18.
Yuko Ichikawa Hideo Yamagata Kunio Tochikubo Shigezo Udaka 《FEMS microbiology letters》1993,111(2-3):219-224
Abstract We have constructed a very efficient synthesis and secretion system for cholera toxin B subunit (CTB) of Vibrio cholerae 569B using Bacillus brevis . The constructed expression-secretion vector has the multiple promoters and the signal peptide coding region of the mwp gene, a structural gene for one of the major cell wall proteins of B. brevis strain 47, directly followed by the gene encoding the mature CTB. A large amount of mature CTB (1.4 g per liter of culture) was secreted into the medium. It had the same amino terminal amino acid sequence as that of authentic CTB and was fully active in GM1 ganglioside binding assay. 相似文献
19.
20.
Jani D Singh NK Bhattacharya S Meena LS Singh Y Upadhyay SN Sharma AK Tyagi AK 《Plant cell reports》2004,22(7):471-477
Nicotiana tabacum var. Samsun was transformed via Agrobacterium-mediated transformation with a gene encoding the cholera toxin B subunit (CTB) of Vibrio cholerae, modified to contain a sequence coding for an endoplasmic reticulum retention signal (SEKDEL), under the control of the cauliflower mosaic virus 35S promoter. Total protein from the transgenic leaf tissue was isolated and an aliquot containing 5 g recombinant CTB was injected intradermally into Balb/c (H2Kd) mice. CTB-specific serum IgG was detected in animals that had been administered plant-expressed or native purified CTB. A T-cell proliferation study using splenocytes and cytokine estimations in supernatants generated by in vitro stimulation of macrophages isolated from the immuno-primed animals was carried out. Inhibition of proliferation of T lymphocytes was observed in splenic T lymphocytes isolated from animals injected with either native or plant-expressed CTB. Macrophages isolated from mice immunised with native or plant-expressed CTB showed enhanced secretion of interleukin-10 but secretion of lipopolysaccharide-induced interleukin-12 and tumor necrosis factor alpha was inhibited. These studies suggest that plant-expressed protein behaved like native CTB with regards to effects on T-cell proliferation and cytokine levels, indicating the suitability of plant expression systems for the production of bacterial antigens, which could be used as edible vaccine. The transgene was found to be inherited in the progeny and was expressed to yield a pentameric form of CTB as evident by its interaction with GM1 ganglioside.Abbreviations BAP 6-Benzylaminopurine - Con A Concanavilin A - CTB Cholera toxin B subunit - ctxB Gene encoding cholera toxin B subunit - ELISA Enzyme-linked immunosorbent assay - HRP Horseradish peroxidase - IL-10 Interleukin-10 - IL-12 Interleukin-12 - LPS Lipopolysaccharide - NAA Naphthaleneacetic acid - PBS Phosphate-buffered saline - TNF Tumour necrosis factor alphaCommunicated by H. Uchimiya 相似文献