首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
The molecular mechanisms by which chronic hypoxia, whether constant (CCH) or intermittent (CIH), alters the heart rhythm are still under debate. Expression level, control, maturational profile and intercoordination of 54 genes encoding heart rhythm determinants (HRDs) were analyzed in 36 mice subjected for 1, 2 or 4 weeks of their early life to normal atmospheric conditions or to CCH or CIH. Our analysis revealed a complex network of genes encoding various heart rate, inotropy and development controllers, receptors, ion channels and transporters, ankyrins, epigenetic modulators and intercalated disc components (adherens, cadherins, catenins, desmosomal, gap and tight junction proteins). The network is remodeled during maturation and substantially and differently altered by CIH and CCH. Gene Prominence Analysis that ranks the genes according to their expression stability and networking within functional gene webs, confirmed the HRD status of certain epigenetic modulators and components of the intercalated discs not yet associated with arrhythmia.  相似文献   

4.
5.
In models of type 2 diabetes the expression of beta-cell genes is altered, but these changes have not fully explained the impairment in beta-cell function. We hypothesized that changes in beta-cell phenotype and global alterations in both carbohydrate and lipid pathways are likely to contribute to secretory abnormalities. Therefore, expression of genes involved in carbohydrate and lipid metabolism were analyzed in islets 4 weeks after 85-95% partial pancreatectomy (Px) when beta-cells have impaired glucose-induced insulin secretion and ATP synthesis. Px rats after 1 week developed mild to severe hyperglycemia that was stable for the next 3 weeks, whereas neither plasma triglyceride, non-esterified fatty acid, or islet triglyceride levels were altered. Expression of peroxisome proliferator-activated receptors (PPARs), with several target genes, were reciprocally regulated; PPARalpha was markedly reduced even at low level hyperglycemia, whereas PPARgamma was progressively increased with increasing hyperglycemia. Uncoupling protein 2 (UCP-2) was increased as were other genes barely expressed in sham islets including lactate dehydrogenase-A (LDH-A), lactate (monocarboxylate) transporters, glucose-6-phosphatase, fructose-1,6-bisphosphatase, 12-lipoxygenase, and cyclooxygenase 2. On the other hand, the expression of beta-cell-associated genes, insulin, and GLUT2 were decreased. Treating Px rats with phlorizin normalized hyperglycemia without effecting plasma fatty acids and reversed the changes in gene expression implicating the importance of hyperglycemia per se in the loss of beta-cell phenotype. In addition, parallel changes were observed in beta-cell-enriched tissue dissected by laser capture microdissection from the central core of islets. In conclusion, chronic hyperglycemia leads to a critical loss of beta-cell differentiation with altered expression of genes involved in multiple metabolic pathways diversionary to normal beta-cell glucose metabolism. This global maladaptation in gene expression at the time of increased secretory demand may contribute to the beta-cell dysfunction found in diabetes.  相似文献   

6.
7.
We hypothesized that impaired proteasomal function affects gene expression in cardiomyocytes. To identify those genes, a proteomics-based analysis of neonatal rat cardiac myocytes treated with the proteasome inhibitor MG132 in comparison to vehicle treated control cells was performed. MG132 treatment induced reproducible changes in the protein expression profile, which was analyzed by two-dimensional difference gel electrophoresis followed by tryptic peptide mass fingerprinting for spot identification by MALDI-TOF mass spectrometry. The identified protein alterations could be grouped into three major categories: (1) induction of small heat shock proteins (HSPs) with chaperonic function, such as HSP27, alphaB-crystallin, and cardiovascular HSP, (2) altered expression of actin associated proteins, such as cofilin-1 and transgelin, and (3) induction of antioxidant proteins, such as peroxiredoxin-1, superoxide dismutase-1, and hemeoxygenase-1. Northern blotting revealed that expression was regulated at the mRNA level. Given that proteasomal activity is decreased in cardiovascular diseases, alterations in proteasome-dependent control of mRNA expression could provide a novel mechanism by which disease progression is modulated.  相似文献   

8.
9.
We previously demonstrated that fetuses from undernourished pregnant rats exhibited increased beta-cell mass and hyperinsulinemia, whereas keeping food restriction until adult age caused reduced beta-cell mass, hypoinsulinemia, and decreased insulin secretion. Because these alterations can be related to insulin availability, we have now investigated early and long-term effects of protein calorie food restriction on insulin mRNA levels as well as the possible mechanisms that could modulate the endogenous insulin mRNA content. We used fetuses at 21.5 days of gestation proceeding from food-restricted rats during the last week of pregnancy and 70-day-old rats undernourished from day 14 of gestation until adult age and with respective controls. Insulin mRNA levels, glucose transporters, and total glycolysis and mitochondrial oxidative fluxes were evaluated. We additionally analyzed undernutrition effects on signals implicated in glucose-mediated insulin gene expression, especially pancreatic duodenal homeobox-1 (PDX-1), stress-activated protein kinase-2 (p38/SAPK2), and phosphatidylinositol 3-kinase. Undernourished fetuses showed increased insulin mRNA, oxidative glucose metabolism, and p38/SAPK2 levels, whereas undernutrition until adult age provoked a decrease in insulin gene expression, oxidative glucose metabolism, and PDX-1 levels. The results indicate that food restriction caused changes in insulin gene expression and content leading to alterations in glucose-stimulated insulin secretion. The molecular events, increased p38/SAPK2 levels in fetuses and decreased PDX-1 levels in adults, seem to be the responsible for the altered insulin mRNA expression. Moreover, because PDX-1 activation appears to be regulated by glucose-derived metabolite(s), the altered glucose oxidation caused by undernutrition could in some manner affect insulin mRNA expression.  相似文献   

10.
11.
12.
PHOSPHATE TRANSPORTER1 (PHT1) genes encode phosphate (Pi) transporters that play a fundamental role in Pi acquisition and remobilization in plants. Mutation of the Arabidopsis thaliana PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF1) impairs Pi transport, resulting in the constitutive expression of many Pi starvation-induced genes, increased arsenate resistance, and reduced Pi accumulation. PHF1 expression was detected in all tissues, particularly in roots, flowers, and senescing leaves, and was induced by Pi starvation, thus mimicking the expression patterns of the whole PHT1 gene family. PHF1 was localized in endoplasmic reticulum (ER), and mutation of PHF1 resulted in ER retention and reduced accumulation of the plasma membrane PHT1;1 transporter. By contrast, the PIP2A plasma membrane protein was not mislocalized, and the secretion of Pi starvation-induced RNases was not affected in the mutant. PHF1 encodes a plant-specific protein structurally related to the SEC12 proteins of the early secretory pathway. However, PHF1 lacks most of the conserved residues in SEC12 proteins essential as guanine nucleotide exchange factors. Although it functions in early secretory trafficking, PHF1 likely evolved a novel mechanism accompanying functional specialization on Pi transporters. The identification of PHF1 reveals that plants are also endowed with accessory proteins specific for selected plasma membrane proteins, allowing their exit from the ER, and that these ER exit cofactors may have a phylum-specific origin.  相似文献   

13.
14.
15.
The present investigation was undertaken to study the effect of in vitro exposure of Colo205, colonadenocarcinoma cells, to monocarboxylate transporter inhibitor α-cyano-4-hydroxycinnamate (αCHC) on cell survival and evolution of resistance to chemotherapeutic drug cisplatin. αCHC-treated Colo205 cells showed inhibition of survival accompanied by an augmented induction of apoptosis. Changes in cell survival properties were associated with alterations in lactate efflux, pH homeostasis, expression of glucose transporters, glucose uptake, HIF-1α, generation of nitric oxide, expression pattern of some key cell survival regulatory molecules: Bcl2, Bax, active caspase-3 and p53. Pretreatment of Colo205 cells with αCHC also altered their susceptibility to the cytotoxicity of cisplatin accompanied by altered expression of multidrug resistance regulating MDR1 and MRP1 genes. This study for the first time deciphers some of the key molecular events underlying modulation of cell survival of cancer cells of colorectal origin by αCHC and its contribution to chemosensitization against cisplatin. Thus these findings will be of immense help in further research for optimizing the use of αCHC for improving the chemotherapeutic efficacy of anticancer drugs like cisplatin.  相似文献   

16.
Infected-cell protein 27 (ICP27) is a herpes simplex virus type 1 alpha, or immediate-early, protein involved in the regulation of viral gene expression. To better understand the function(s) of ICP27 in infected cells, we have isolated and characterized viral recombinants containing defined alterations in the ICP27 gene. The mutant virus d27-1 contains a 1.6-kilobase deletion which removes the ICP27 gene promoter and most of the coding sequences, while n59R, n263R, n406R, and n504R are mutants containing nonsense mutations which encode ICP27 molecules truncated at their carboxyl termini. All five mutants were defective for lytic replication in Vero cells. Analysis of the mutant phenotypes suggests that ICP27 has the following regulatory effects during the viral infection: (i) stimulation of expression of gamma-1 genes, (ii) induction of expression of gamma-2 genes, (iii) down regulation of expression of alpha and beta genes late in infection, and (iv) stimulation of viral DNA replication. Cells infected with the mutant n504R expressed wild-type levels of gamma-1 proteins but appeared to be unable to efficiently express gamma-2 mRNAs or proteins. This result suggests that ICP27 mediates two distinct transactivation functions, one which stimulates gamma-1 gene expression and a second one required for gamma-2 gene induction. Analysis of the mutant n406R suggested that a truncated ICP27 polypeptide can interfere with the expression of many viral beta genes. Our results demonstrate that ICP27 has a variety of positive and negative effects on the expression of viral genes during infection.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号