首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Traveling Wave Solutions of a Nerve Conduction Equation   总被引:2,自引:1,他引:1       下载免费PDF全文
We consider a pair of differential equations whose solutions exhibit the qualitative properties of nerve conduction, yet which are simple enough to be solved exactly and explicitly. The equations are of the FitzHugh-Nagumo type, with a piecewise linear nonlinearity, and they contain two parameters. All the pulse and periodic solutions, and their propagation speeds, are found for these equations, and the stability of the solutions is analyzed. For certain parameter values, there are two different pulse-shaped waves with different propagation speeds. The slower pulse is shown to be unstable and the faster one to be stable, confirming conjectures which have been made before for other nerve conduction equations. Two periodic waves, representing trains of propagated impulses, are also found for each period greater than some minimum which depends on the parameters. The slower train is unstable and the faster one is usually stable, although in some cases both are unstable.  相似文献   

2.
Summary Nagumo's nerve conduction equation has travelling wave solutions of pulse type and periodic wave type. We consider the stability of the latter ones. We denote byL(c) the minimum spatial period of a periodic travelling wave solution whose propagation speed isc. It is shown that this travelling wave solution is unstable ifL′(c)<0.  相似文献   

3.
We study a differential equation that models nerve impulse transmission. The nonlinearity is simplified to be piecewise linear in order to allow explicit solution. In general, two solitary impulse solutions are exhibited. The temporal stability of these solutions is analyzed by a technique that identifies the number of unstable modes. These results extend the results of Rinzel and Keller (1973, Biophys. J. 13:1313) by showing that the slower unstable solution has only one unstable mode, and that the fast solution, as conjectured, has no unstable modes and is therefore stable.  相似文献   

4.
 We study the existence and stability of traveling waves and pulses in a one-dimensional network of integrate-and-fire neurons with synaptic coupling. This provides a simple model of excitable neural tissue. We first derive a self-consistency condition for the existence of traveling waves, which generates a dispersion relation between velocity and wavelength. We use this to investigate how wave-propagation depends on various parameters that characterize neuronal interactions such as synaptic and axonal delays, and the passive membrane properties of dendritic cables. We also establish that excitable networks support the propagation of solitary pulses in the long-wavelength limit. We then derive a general condition for the (local) asymptotic stability of traveling waves in terms of the characteristic equation of the linearized firing time map, which takes the form of an integro-difference equation of infinite order. We use this to analyze the stability of solitary pulses in the long-wavelength limit. Solitary wave solutions are shown to come in pairs with the faster (slower) solution stable (unstable) in the case of zero axonal delays; for non-zero delays and fast synapses the stable wave can itself destabilize via a Hopf bifurcation. Received: 27 October 1998  相似文献   

5.
《Biophysical journal》2022,121(18):3499-3507
It has been demonstrated experimentally that slow and fast conduction waves with distinct conduction velocities can occur in the same nerve system depending on the strength or the form of the stimulus, which give rise to two modes of nerve functions. However, the mechanisms remain to be elucidated. In this study, we use computer simulations of the cable equation with modified Hodgkin-Huxley kinetics and analytical solutions of a simplified model to show that stimulus-dependent slow and fast waves recapitulating the experimental observations can occur in the cable, which are the two stable conduction states of a bistable conduction behavior. The bistable conduction is caused by a positive feedback loop of the wavefront upstroke speed, mediated by the sodium channel inactivation properties. Although the occurrence of bistable conduction only requires the presence of the sodium current, adding a calcium current to the model further promotes bistable conduction by potentiating the slow wave. We also show that the bistable conduction is robust, occurring for sodium and calcium activation thresholds well within the experimentally determined ones of the known sodium and calcium channel families. Since bistable conduction can occur in the cable equation of Hodgkin-Huxley kinetics with a single inward current, i.e., the sodium current, it can be a generic mechanism applicable to stimulus-dependent fast and slow conduction not only in the nerve systems but also in other electrically excitable systems, such as cardiac muscles.  相似文献   

6.
Summary Nagumo's nerve conduction equation has a one-parameter family of spatially periodic travelling wave solutions. First, we prove the existence of these solutions by using a topological method. (There are some exceptional cases in which this method cannot be applied in showing the existence.) A periodic travelling wave solution corresponds to a closed orbit of a third-order dynamical system. The Poincaré index of the closed orbit is determined as a direct consequence of the proof of the existence. Second, we prove that the periodic travelling wave solution is unstable if the Poincaré index of the corresponding closed orbit is + 1. By using this result, together with the result of the author's previous paper, it is concluded that the slow periodic travelling wave solutions are always unstable. Third, we consider the stability of the fast periodic travelling wave solutions. We denote by L(c) the spatial period of the travelling wave solution with the propagation speed c. It is shown that the fast solution is unstable if its period is close to Lmin, the minimum of L(c).  相似文献   

7.
For precise boundary conditions of biological relevance, it is proved that the steadily propagating plane-wave solution to the Fisher equation requires the unique (eigenvalue) velocity of advance 2(Df)1/2, whereD is the diffusivity of the mutant species andf is the frequency of selection in favor of the mutant. This rigorous result shows that a so-called “wrong equation”, i.e. one which differs from Fisher's by a term that is seemingly inconsequential for certain initial conditions, cannot be employed readily to obtain approximate solutions to Fisher's, for the two equations will often have qualitatively different manifolds of exact solutions. It is noted that the Fisher equation itself may be inappropriate in certain biological contexts owing to the manifest instability of the lowerconcentration uniform equilibrium state (UES). Depicting the persistence of a mutantdeficient spatial pocket, an exact steady-state solution to the Fisher equation is presented. As an alternative and perhaps more faithful model equation for the propagation of certain species properties through a homogeneous population, we consider a reaction-diffusion equation that features a cubic-polynomial rate expression in the species concentration, with two stable UES and one intermediate unstable UES. This equation admits a remarkably simple exact analytical solution to the steadily propagating plane-wave eigenvalue problem. In the latter solution, the sign of the eigenvelocity is such that the wave propagates to yield the “preferred” stable UES (namely, the one further removed from the unstable intermediate UES) at all spatial points ast→∞. The cubic-polynomial equation also admits an exact steady-state solution for a mutant-deficient or mutant-isolated spatial pocket. Finally, the perpetuating growth of a mutant population from an arbitrary localized initial distribution, a mathematical problem analogous to that for ignition in laminar flame theory, is studied by applying differential inequality analysis, and rigorous sufficient conditions for extinction are derived here.  相似文献   

8.
Two families of Gaussian-type soliton solutions of the (n+1)-dimensional Schrödinger equation with cubic and power-law nonlinearities in -symmetric potentials are analytically derived. As an example, we discuss some dynamical behaviors of two dimensional soliton solutions. Their phase switches, powers and transverse power-flow densities are discussed. Results imply that the powers flow and exchange from the gain toward the loss regions in the cell. Moreover, the linear stability analysis and the direct numerical simulation are carried out, which indicates that spatial Gaussian-type soliton solutions are stable below some thresholds for the imaginary part of -symmetric potentials in the defocusing cubic and focusing power-law nonlinear medium, while they are always unstable for all parameters in other media.  相似文献   

9.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

10.
The amplification of acoustic waves due to the transfer of thermal energy from electrons to the neutral component of a glow discharge plasma is studied theoretically. It is shown that, in order for acoustic instability (sound amplification) to occur, the amount of energy transferred should exceed the threshold energy, which depends on the plasma parameters and the acoustic wave frequency. The energy balance equation for an electron gas in the positive column of a glow discharge is analyzed for conditions typical of experiments in which acoustic wave amplification has been observed. Based on this analysis, one can affirm that, first, the energy transferred to neutral gas in elastic electron-atom collisions is substantially lower than the threshold energy for acoustic wave amplification and, second, that the energy transferred from electrons to neutral gas in inelastic collisions is much higher than that transferred in elastic collisions and thus may exceed the threshold energy. It is also shown that, for amplification to occur, there should exist some heat dissipation mechanism more efficient than gas heat conduction. It is suggested that this may be convective radial mixing within a positive column due to acoustic streaming in the field of an acoustic wave. The features of the phase velocity of sound waves in the presence of acoustic instability are investigated.  相似文献   

11.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

12.
The Sharpe-Lotka-McKendrick-von Foerster equations for non-dispersing age-sex-structured populations with a harmonic mean type mating law are considered and their separable solutions are analysed. For certain forms of the demographic rates the underlying evolution equations are reduced to systems of ODEs, the long time behavior of their solutions is studied, and the stability of separable solutions is discussed. It is found that for the constant death rates and constant sex ratio of newborns with stationary birth rates this model admits one one-parameter class of separable solutions, two such classes (repeated or different) or no such ones. In the case of special forms of age-dependent birth rates, solutions of one of these two different classes corresponding to the greater root of the characteristic equation are locally stable, solutions of the other one corresponding to the smaller root are unstable, and the population dies out if the model does not admit separable solutions or if initial densities of newborns are small enough in the case of the existence of separable solutions. In the case of constant vital rates, the model has no separable solutions or admits only one class of such ones that are globally stable.  相似文献   

13.
The problem is solved of the stability of a nonneutral plasma that completely fills a waveguide and consists of magnetized cold electrons and a small density fraction of ions produced by ionization of the atoms of the background gas. The ions are described by an anisotropic distribution function that takes into account the characteristic features of their production in crossed electric and magnetic fields. By solving a set of Vlasov-Poisson equations analytically, a dispersion equation is obtained that is valid over the entire range of allowable electric and magnetic field strengths. The solutions to the dispersion equation for the m = +1 main azimuthal mode are found numerically. The plasma oscillation spectrum consists of the families of Trivelpiece-Gould modes at frequencies equal to the frequencies of oblique Langmuir oscillations Doppler shifted by the electron rotation and also of the families of “modified” ion cyclotron (MIC) modes at frequencies close to the harmonics of the MIC frequency (the frequencies of radial ion oscillations in crossed fields). It is shown that, over a wide range of electric and magnetic field strengths, Trivelpiece-Gould modes have low frequencies and interact with MIC modes. Trivelpiece-Gould modes at frequencies close to the harmonics of the MIC frequency with nonnegative numbers are unstable. The lowest radial Trivelpiece-Gould mode at a frequency close to the zeroth harmonic of the MIC frequency has the fastest growth rate. MIC modes are unstable over a wide range of electric and magnetic field strengths and grow at far slower rates. For a low ion density, a simplified dispersion equation is derived perturbatively that accounts for the nonlocal ion contribution, but, at the same time, has the form of a local dispersion equation for a plasma with a transverse current and anisotropic ions. The solutions to the simplified dispersion equation are obtained analytically. The growth rates of the Trivelpiece-Gould modes and the behavior of the MIC modes agree with those obtained by numerical simulation.  相似文献   

14.
The Hodgkin-Huxley model of the nerve axon describes excitation and propagation of the nerve impulse by means of a nonlinear partial differential equation. This equation relates the conservation of the electric current along the cablelike structure of the axon to the active processes represented by a system of three rate equations for the transport of ions through the nerve membrane. These equations have been integrated numerically with respect to both distance and time for boundary conditions corresponding to a finite length of squid axon stimulated intracellularly at its midpoint. Computations were made for the threshold strength-duration curve and for the repetitive firing of propagated impulses in response to a maintained stimulus. These results are compared with previous solutions for the space-clamped axon. The effect of temperature on the threshold intensity for a short stimulus and for rheobase was determined for a series of values of temperature. Other computations show that a highly unstable subthreshold propagating wave is initiated in principle by a just threshold stimulus; that the stability of the subthreshold wave can be enhanced by reducing the excitability of the axon as with an anesthetic agent, perhaps to the point where it might be observed experimentally; but that with a somewhat greater degree of narcotization, the axon gives only decrementally propagated impulses.  相似文献   

15.
Based on simulations with the Dubreil-Jacotin-Long (DJL) equation, the limiting amplitude and the breaking mechanisms of internal solitary waves of depression (ISWs) are predicted for different background stratifications. These theoretical predictions are compared to the amplitude and the stability of the leading internal solitary waves of more than 200 trains of ISWs observed in the centre of a sub-basin of Lake Constance. The comparison of the model results with the field observations indicates that the simulated limiting amplitude of the ISWs provides an excellent prediction of the critical wave height above which ISWs break in the field. Shear instabilities and convective instabilities are each responsible for about half of the predicted wave breaking events. The data suggest the presence of core-like structures within the convectively unstable waves, but fully developed and stable cores were not observed. The lack of stable trapped cores in the field can be explained by the results from dynamic simulations of ISWs with trapped cores which demonstrate that even slight disturbances of the background stratification cause trapped cores to become unstable.  相似文献   

16.
During a wound-healing cell migration assay experiment, cells are observed to detach and undergo mitosis before reattaching as a pair of cells on the substrate. During experiments with mice 3T3 fibroblasts, cell detachment can be confined to the wavefront region or it can occur over the whole wave profile. A multi-species continuum approach to modelling a wound-healing assay is taken to account for this phenomenon. The first cell population is composed of attached motile cells, while the second population is composed of detached immotile cells undergoing mitosis and returning to the migrating population after successful division. The first model describes cell division occurring only in the wavefront region, while a second model describes cell division over the whole of the scrape wound. The first model reverts to the Fisher equation when the reattachment rate relative to the detachment rate is large, while the second case does not revert to the Fisher equation in any limit. The models yield travelling wave solutions. The minimum wave speed is slower than the minimum Fisher wave speed and its dependence on the cell detachment and reattachment rate parameters is analysed. Approximate travelling wave profiles of the two cell populations are determined asymptotically under certain parameter regimes.  相似文献   

17.
To give a realistic representation of the pulse propagation in arteries a theoretical analysis of the wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube is considered. The tube is assumed to be orthotropic and its longitudinal motion is constrained by a uniformly distributed additional mass, a dashpot and a spring. The fluid is assumed to be Newtonian. The analysis is restricted to propagation of small amplitude harmonic waves whose wavelength is large compared to the radius of the vessel. Elimination of arbitrary constants from the general solutions of the equations of motion of the fluid and the wall gives a frequency equation to determine the velocity of propagation. Two roots of this equation give the velocity of propagation of two distinct outgoing waves. One of the waves propagates slower than the other. The propagation properties of s lower waves are very slightly affected by the degree of anisotropy of the wall. The velocity of propagation of faster waves decreases as the ratio of the longitudinal modulus of elasticity to the circumferential modulus decreases; transmission of these waves is very little affected. The influence of the tethering on the propagation velocity of slower waves is negligibly small; transmission of these waves is seriously affected. In tethered tubes faster waves are completely attenuated.  相似文献   

18.
This paper is concerned with the spreading speeds and traveling wave solutions of discrete time recursion systems, which describe the spatial propagation mode of two competitive invaders. We first establish the existence of traveling wave solutions when the wave speed is larger than a given threshold. Furthermore, we prove that the threshold is the spreading speed of one species while the spreading speed of the other species is distinctly slower compared to the case when the interspecific competition disappears. Our results also show that the interspecific competition does affect the spread of both species so that the eventual population densities at the coexistence domain are lower than the case when the competition vanishes.  相似文献   

19.
A class of population models is considered in which the parameters such as fecundity, mortality and interaction coefficients are assumed to be age-dependent. Conditions for the existence, stability and global attractivity of steady-state and periodic solutions are derived. The dependence of these solutions on the maturation periods is analyzed. These results are applied to specific single and multiple population models. It is shown that periodic solutions cannot occur in a general class of single population age-dependent models. Conditions are derived that determine whether increasing the maturation period has a stabilizing effect. In specific cases, it is shown that any number of switches in stability can occur as the maturation period is increased. An example is given of predator-prey model where each one of these stability switches corresponds to a stable steady state losing its stability via a Hopf bifurcation to a periodic solution and regaining its stability upon further increase of the maturation period.  相似文献   

20.
Propagation speed of an impulse is influenced by previous activity. A pulse following its predecessor too closely may travel more slowly than a solitary pulse. In contrast, for some range of interspike intervals, a pulse may travel faster than normal because of a possible superexcitable phase of its predecessor's wake. Thus, in general, pulse speeds and interspike intervals will not remain constant during propagation. We consider these issues for the Hodgkin-Huxley cable equations. First, the relation between speed and frequency or interspike interval, the dispersion relation, is computed for particular solutions, steadily propagating periodic wave trains. For each frequency, omega, below some maximum frequency, omega max, we find two such solutions, one fast and one slow. The latter are likely unstable as a computational example illustrates. The solitary pulse is obtained in the limit as omega tends to zero. At high frequency, speed drops significantly below the solitary pulse speed; for 6.3 degrees C, the drop at omega max is greater than 60%. For an intermediate range of frequencies, supernormal speeds are found and these are correlated with oscillatory swings in sub- and superexcitability in the return to rest of an impulse. Qualitative consequences of the dispersion relation are illustrated with several different computed pulse train responses of the full cable equations for repetitively applied current pulses. Moreover, changes in pulse speed and interspike interval during propagation are predicted quantitatively by a simple kinematic approximation which applies the dispersion relation, instantaneously, to individual pulses. One example shows how interspike time intervals can be distorted during propagation from a ratio of 2:1 at input to 6:5 at a distance of 6.5 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号