首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Bacteriophage λ replication complex, containing the phage-encoded O initiator protein protected from proteases by other elements of this complex, is a stable structure that can be inherited by one of the two daughter λ DNA copies after a replication round in Escherichia coli. In normal growth conditions in bacteria bearing a plasmid derived from bacteriophage λ, such a complex may be stable for many cell generations. However, it was found that this stable structure is disassembled under certain conditions, namely, after heat shock. Therefore, we asked whether other environmental stresses may cause disassembly of the λ replication complex. We found that UV irradiation of the host cells prevented formation of the stable λ replication complex (though not preventing phage replication), while the same UV doses did not affect the stability of the replication complex assembled prior to the irradiation. These results indicate that the stable λ replication complex, although sensitive to heat shock, is resistant to some other environmental stresses and that formation of at least two types of λ replication complexes is possible. Both stable and unstable λ replication complexes are functional because replication of λ DNA under conditions preventing formation of the stable complex proceeds efficiently. Received: 18 January 2000 / Accepted: 2 March 2000  相似文献   

6.
7.

Introduction

In the light of evidence for the increased heat shock proteins (HSP) expression in neurodegenerative disorders, the presence of the adaptive humoral response of the immune system can be expected. The aim of the study was to check whether Parkinson’s disease (PD) has the ability to elicit immune response against small heat shock proteins.

Methods

IgG and IgM autoantibodies against alpha B-crystallin were assessed in 26 PD patients 26 healthy subjects. For the assessment of anti-HSP IgG autoantibodies serum samples from 31 parkinsonian patients and 31 healthy control subjects were collected. Serum samples from PD patients and healthy control subjects were collected twice, at baseline and after mean of 13 months follow up.

Results

Both IgM and IgG autoantibodies against alpha ß-crystallin in PD patients were significantly higher compared to healthy controls (p<0.05). We also found statistically significant increase in antibodies titers against alpha ß-crystallin over the time of 13 months, both for IgG (p = 0.021) and for IgM (p<0.0001). Additionally, PD patients presented higher levels of anti-HSP IgG autoantibodies than healthy controls (p = 0.02).

Conclusions

Increase of IgG and IgM autoantibodies against alpha B-crystallin in PD patients over time may suggest their involvement in the disease pathogenesis and progression. Further studies are required to confirm the role of this antibody as a biomarker of the disease progression.  相似文献   

8.
9.
10.
11.
The respiratory chain of Escherichia?coli contains three quinones. Menaquinone and demethylmenaquinone have low midpoint potentials and are involved in anaerobic respiration, while ubiquinone, which has a high midpoint potential, is involved in aerobic and nitrate respiration. Here, we report that demethylmenaquinone plays a role not only in trimethylaminooxide-, dimethylsulfoxide- and fumarate-dependent respiration, but also in aerobic respiration. Furthermore, we demonstrate that demethylmenaquinone serves as an electron acceptor for oxidation of succinate to fumarate, and that all three quinol oxidases of E.?coli accept electrons from this naphtoquinone derivative.  相似文献   

12.
13.
In response to a conditioning stress, the expression of a set of molecular chaperones called heat shock proteins is increased. In neurons, stress-induced and constitutively expressed molecular chaperones protect against damage induced by ischemia and neurodegenerative diseases, however the molecular basis of this protection is not known. Here we have investigated the crosstalk between stress-induced chaperones and cysteine string protein (CSPα). CSPα is a constitutively expressed synaptic vesicle protein bearing a J domain and a cysteine rich “string” region that has been implicated in the long term functional integrity of synaptic transmission and the defense against neurodegeneration. We have shown previously that the CSPα chaperone complex increases isoproterenol-mediated signaling by stimulating GDP/GTP exchange of Gαs. In this report we demonstrate that in response to heat shock or treatment with the Hsp90 inhibitor geldanamycin, the J protein Hsp40 becomes a major component of the CSPα complex. Association of Hsp40 with CSPα decreases CSPα-CSPα dimerization and enhances the CSPα-induced increase in steady state GTP hydrolysis of Gαs. This newly identified CSPα-Hsp40 association reveals a previously undescribed coupling of J proteins. In view of the crucial importance of stress-induced chaperones in the protection against cell death, our data attribute a role for Hsp40 crosstalk with CSPα in neuroprotection.  相似文献   

14.
15.
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE+ and rpoS+gadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.  相似文献   

16.
17.
18.
19.
20.
Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of proteins homeostasis are coupled with realistic population dynamics simulations. By postulating a genotype-phenotype relationship we define a cell division rate in terms of functional concentrations of proteins and protein complexes, whose Boltzmann stabilities of folding and strengths of their functional interactions are exactly evaluated from their sequence information. We compare and contrast evolutionary dynamics for two models of chaperon action. In the active model, foldase chaperones function as nonequilibrium machines to accelerate the rate of protein folding. In the passive model, holdase chaperones form reversible complexes with proteins in their misfolded conformations to maintain their solubility. We find that only cells expressing foldase chaperones are capable of genuine heat shock response to the increase in the amount of unfolded proteins at elevated temperatures. In response to heat shock, cells’ limited resources are redistributed differently for active and passive models. For the active model, foldase chaperones are overexpressed at the expense of downregulation of high abundance proteins, whereas for the passive model; cells react to heat shock by downregulating their high abundance proteins, as their low abundance proteins are upregulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号