首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many human diseases including development of cancer is associated with depletion of mitochondrial DNA (mtDNA) content. These diseases are collectively described as mitochondrial DNA depletion syndrome (MDS). High similarity between yeast and human mitochondria allows genomic study of the budding yeast to be used to identify human disease genes. In this study, we systematically screened the pre-existing respiratory-deficient Saccharomyces cerevisiae yeast strains using fluorescent microscopy and identified 102 nuclear genes whose deletions result in a complete mtDNA loss, of which 52 are not reported previously. Strikingly, these genes mainly encode protein products involved in mitochondrial protein biosynthesis process (54.9%). The rest of these genes either encode protein products associated with nucleic acid metabolism (14.7%), oxidative phosphorylation (3.9%), or other protein products (13.7%) responsible for bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis and iron homeostasis. Thirteen (12.7%) of the genes encode proteins of unknown function. We identified human orthologs of these genes, conducted the interaction between the gene products and linked them to human mitochondrial disorders and other pathologies. In addition, we screened for genes whose defects affect the nuclear genome integrity. Our data provide a systematic view of the nuclear genes involved in maintenance of mitochondrial DNA. Together, our studies i) provide a global view of the genes regulating mtDNA content; ii) provide compelling new evidence toward understanding novel mechanism involved in mitochondrial genome maintenance and iii) provide useful clues in understanding human diseases in which mitochondrial defect and in particular depletion of mitochondrial genome plays a critical role.  相似文献   

2.
Mitochondrial DNA (mtDNA) copy number in peripheral blood has been suggested as risk modifier in various types of cancer. However, its influence on melanoma risk is unclear. We evaluated the association between mtDNA copy number in peripheral blood and melanoma risk in 500 melanoma cases and 500 healthy controls from an ongoing melanoma study. The mtDNA copy number was measured using real-time polymerase chain reaction. Overall, mean mtDNA copy number was significantly higher in cases than in controls (1.15 vs 0.99, P<0.001). Increased mtDNA copy number was associated with a 1.45-fold increased risk of melanoma (95% confidence interval: 1.12-1.97). Significant joint effects between mtDNA copy number and variables related to pigmentation and history of sunlight exposure were observed. This study supports an association between increased mtDNA copy number and melanoma risk that is independent on the known melanoma risk factors (pigmentation and history of sunlight exposure).  相似文献   

3.
4.

Purpose

Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function.

Methods

The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15), and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE) were performed.

Results

Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001) and K-MMSE score (r=0.06, p=0.02). Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04). Age (r=-0.15, p=0.09), waist circumference (r=-0.16, p=0.07), and serum ferritin level (r=-0.13, p=0.07) tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise.

Conclusions

This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest that telomere function may influence mitochondrial function in humans.  相似文献   

5.

Background

Oral squamous cell carcinoma (OSCC) is the sixth most common cancer globally. Tobacco consumption and HPV infection, both are the major risk factor for the development of oral cancer and causes mitochondrial dysfunction. Genetic polymorphisms in xenobiotic-metabolizing enzymes modify the effect of environmental exposures, thereby playing a significant role in gene–environment interactions and hence contributing to the individual susceptibility to cancer. Here, we have investigated the association of tobacco - betel quid chewing, HPV infection, GSTM1-GSTT1 null genotypes, and tumour stages with mitochondrial DNA (mtDNA) content variation in oral cancer patients.

Methodology/Principal Findings

The study comprised of 124 cases of OSCC and 140 control subjects to PCR based detection was done for high-risk HPV using a consensus primer and multiplex PCR was done for detection of GSTM1-GSTT1 polymorphism. A comparative ΔCt method was used for determination of mtDNA content. The risk of OSCC increased with the ceased mtDNA copy number (Ptrend = 0.003). The association between mtDNA copy number and OSCC risk was evident among tobacco – betel quid chewers rather than tobacco – betel quid non chewers; the interaction between mtDNA copy number and tobacco – betel quid was significant (P = 0.0005). Significant difference was observed between GSTM1 - GSTT1 null genotypes (P = 0.04, P = 0.001 respectively) and HPV infection (P<0.001) with mtDNA content variation in cases and controls. Positive correlation was found with decrease in mtDNA content with the increase in tumour stages (P<0.001). We are reporting for the first time the association of HPV infection and GSTM1-GSTT1 null genotypes with mtDNA content in OSCC.

Conclusion

Our results indicate that the mtDNA content in tumour tissues changes with tumour stage and tobacco-betel quid chewing habits while low levels of mtDNA content suggests invasive thereby serving as a biomarker in detection of OSCC.  相似文献   

6.
肉和肉制品是人类生活的重要营养来源,但近年来肉制品中发生的掺假使假事件屡见不鲜,使得肉品的质量安全问题已经成为全世界关注的热点话题。以核酸为目标的动物源鉴定是当前普遍使用的方法。在核酸检测中,常用线粒体基因或核基因作为靶标,缺乏统一标准。以绍兴鸭和北京鸭等不同品种及生鲜组织(鸭血、鸭胸肉、鸭肝、鸭皮、鸭心和鸭腿肉)为实验材料,提取DNA后利用微滴式数字PCR开展线粒体和核DNA拷贝数的比较研究,以两者拷贝数及其比值的变异系数为判定依据。结果显示,核DNA的拷贝数在不同品种鸭组织间相对稳定,且变异系数小于线粒体DNA,表明核DNA是开展鸭肉制品掺假定量检测的最适DNA来源。鸭腿肉中线粒体/核DNA拷贝数比值的变异系数最小,表明线粒体DNA作为靶基因的鸭肉掺假比例定量检测时,鸭腿肉来源的肉制品是最佳选择。  相似文献   

7.

Background

Major depressive disorder (MDD) is the leading cause of disability worldwide, and has significant genetic predisposition. Mitochondria may have a role in MDD and so mitochondrial DNA (mtDNA) has been suggested as a possible biomarker for this disease. We aimed to test whether the mtDNA copy number of peripheral blood leukocytes is related to MDD in young adults.

Methods

A case-control study was conducted with 210 MDD patients and 217 healthy controls (HC). The mtDNA copy number was measured by quantitative polymerase chain reaction (qPCR) method. Depression severity was assessed by the Hamilton-17 Depression Rating Scale (HDRS-17).

Results

We found no significant differences in mtDNA copy number between MDD patients and HC, though the power analysis showed that our sample size has enough power to detect the difference. There were also no significant correlations between mtDNA copy number and the clinical characteristics (such as age, age of onset, episodes, Hamilton Depression Rating Scale (HDRS) score and Global Assessment of Function Scale (GAF) score) in MDD patients.

Conclusion

Our study suggests that leukocyte mtDNA copy number is unlikely to contribute to MDD, but it doesn’t mean that we can exclude the possibility of involvement of mitochondria in the disease. Further studies are required to elucidate whether mtDNA can be a biomarker of MDD.  相似文献   

8.
Breast cancer recurrence (BCR) is a common treatment outcome despite curative-intent primary treatment of non-metastatic breast cancer. Currently used prognostic and predictive factors utilize tumor-based markers, and are not optimal determinants of risk of BCR. Germline-based copy number aberrations (CNAs) have not been evaluated as determinants of predisposition to experience BCR. In this study, we accessed germline DNA from 369 female breast cancer subjects who received curative-intent primary treatment following diagnosis. Of these, 155 experienced BCR and 214 did not, after a median duration of follow up after breast cancer diagnosis of 6.35 years (range = 0.60–21.78) and 8.60 years (range = 3.08–13.57), respectively. Whole genome CNA genotyping was performed on the Affymetrix SNP array 6.0 platform. CNAs were identified using the SNP-Fast Adaptive States Segmentation Technique 2 algorithm implemented in Nexus Copy Number 6.0. Six samples were removed due to poor quality scores, leaving 363 samples for further analysis. We identified 18,561 CNAs with ≥1 kb as a predefined cut-off for observed aberrations. Univariate survival analyses (log-rank tests) identified seven CNAs (two copy number gains and five copy neutral-loss of heterozygosities, CN-LOHs) showing significant differences (P<2.01×10−5) in recurrence-free survival (RFS) probabilities with and without CNAs.We also observed three additional but distinct CN-LOHs showing significant differences in RFS probabilities (P<2.86×10−5) when analyses were restricted to stratified cases (luminal A, n = 208) only. After adjusting for tumor stage and grade in multivariate analyses (Cox proportional hazards models), all the CNAs remained strongly associated with the phenotype of BCR. Of these, we confirmed three CNAs at 17q11.2, 11q13.1 and 6q24.1 in representative samples using independent genotyping platforms. Our results suggest further investigations on the potential use of germline DNA variations as prognostic markers in cancer-associated phenotypes.  相似文献   

9.

Background

Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients.

Methods and Findings

Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women''s Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6–15.8, p = 1×10−7) and ME ARDS (OR 8.4, 95% CI 2.9–24.2, p = 9×10−5) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10−4) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers.

Conclusions

Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients. Please see later in the article for the Editors'' Summary  相似文献   

10.
Liu H  Yu W  Wang X  Fang F  Yang G  Zhou J  Liang X  An W 《Biochemical genetics》2007,45(9-10):683-689
It has proved difficult to find strong and replicable genetic linkages for complex diseases, since each susceptibility gene makes only a modest contribution to onset. This is partly because high-efficacy genetic markers are not usually available. The aim of this article is to explore the possibility that the total number of tandem repeats in one STR locus, rather than the frequencies of different alleles, is a higher efficacy quantitative genetic marker. DNA samples were collected from schizophrenic patients and from a control population. Alleles of the short tandem repeats (STR) loci D3S1358, vWA, and FGA were determined using the STR Profiler Plus PCR amplification kit. The two groups did not differ statistically in the frequencies of alleles at the D3S1358, vWA, or FGA loci. However, a significant difference was obtained in the vWA locus when the total number of core unit repeats was compared between the schizophrenia and control groups (33.28+/-2.61 vs. 32.35+/-2.58, P<0.05). It seems that the number of STR repeats may be a new, quantitative, and higher efficacy genetic marker for directly indicating genetic predisposition to complex hereditary diseases such as schizophrenia.  相似文献   

11.

Background

Grading of patients with aneurysmal subarachnoid hemorrhage (aSAH) is often confounded by seizure, hydrocephalus or sedation and the prediction of prognosis remains difficult. Recently, copeptin has been identified as a serum marker for outcomes in acute ischemic stroke and intracerebral hemorrhage (ICH). We investigated whether copeptin might serve as a marker for severity and prognosis in aSAH.

Methods

Eighteen consecutive patients with aSAH had plasma copeptin levels measured with a validated chemiluminescence sandwich immunoassay. The primary endpoint was the association of copeptin levels at admission with the World Federation of Neurological Surgeons (WFNS) grade score after resuscitation. Levels of copeptin were compared across clinical and radiological scores as well as between patients with ICH, intraventricular hemorrhage, hydrocephalus, vasospasm and ischemia.

Results

Copeptin levels were significantly associated with the severity of aSAH measured by WFNS grade (P = 0.006), the amount of subarachnoid blood (P = 0.03) and the occurrence of ICH (P = 0.02). There was also a trend between copeptin levels and functional clinical outcome at 6-months (P = 0.054). No other clinical outcomes showed any statistically significant association.

Conclusions

Copeptin may indicate clinical severity of the initial bleeding and may therefore help in guiding treatment decisions in the setting of aSAH. These initial results show that copeptin might also have prognostic value for clinical outcome in aSAH.  相似文献   

12.
DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies), incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2) an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031) and waist-hip ratio (p-value = 2.4×10-5), but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.  相似文献   

13.
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.  相似文献   

14.
15.
Mitochondrial genomes show wide variation in their GC content. This study examines the correlations between mitochondrial genome-wide shifts in this feature and a fragment of the cytochrome c oxidase subunit I (COI) gene in animals, plants, and fungi. Because this approach utilizes COI as a sentinel, analyzing sequences from repositories such as GenBank and the Barcode of Life Data System (BOLD) can provide rapid insights into nucleotide usage. With this approach we probe nucleotide composition in a variety of taxonomic groups and establish the degree to which mitochondrial GC content varies among them. We then focus on two groups in particular, the classes Insecta and Aves, which possess the highest and lowest GC content, respectively. We establish that the sentinel approach provides strong indicators of mitochondrial GC content within divergent phyla (R values = 0.86–0.95, p < 0.001, in test cases) and provide evidence that selective pressures acting on GC content extend to noncoding regions of the plant and fungal mitochondrial genomes. We demonstrate that there is considerable variation in GC content of the mitochondrial genome within phyla and at each taxonomic level, leading to a substantial overlap zone in GC content between chordates and invertebrates. Our results provide a novel insight into the mitochondrial genome composition of animals, plants, and fungi and advocate this sentinel technique for the detection of rapid alterations in nucleotide usage as a measure of mitochondrial genome biodiversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In plants, the copy number of the mitochondrial DNA (mtDNA) can be much lower than the number of mitochondria. The biological significance and regulatory mechanisms of this phenomenon remain poorly understood. Here, using the pollen vegetative cell, we examined the role of the Arabidopsis (Arabidopsis thaliana) mtDNA-binding protein WHIRLY2 (AtWHY2). AtWHY2 decreases during pollen development, in parallel with the rapid degradation of mtDNA; to examine the importance of this decrease, we used the pollen vegetative cell-specific promoter Lat52 to express AtWHY2. The transgenic plants (LWHY2) had very high mtDNA levels in pollen, more than 10 times more than in the wild type (ecotype Columbia-0). LWHY2 plants were fertile, morphologically normal, and set seeds; however, reciprocal crosses with heterozygous plants showed reduced transmission of LWHY2-1 through the male and slower growth of LWHY2-1 pollen tubes. We found that LWHY2-1 pollen had significantly more reactive oxygen species and less ATP compared with the wild type, indicating an effect on mitochondrial respiration. These findings reveal that AtWHY2 affects mtDNA copy number in pollen and suggest that low mtDNA copy numbers might be the normal means by which plant cells maintain mitochondrial genetic information.Reflecting their endosymbiotic origin, mitochondria contain DNA genomes (mtDNA) encoding several key proteins for oxidative phosphorylation. As most genes identified in the mitochondrial genome are indispensable for mitochondrial function, it is generally believed that each mitochondrion must possess at least one full copy of the genome. Indeed, this seems to be the case in animals. For example, although the number of mitochondria per cell varies in human, mouse, rabbit, and rat cell lines, the mtDNA copy number per mitochondrion remains constant at 2.6 ± 0.3 (Robin and Wong, 1988). Also, in mouse egg cells, each mitochondrion contains an estimated one to two copies of the mtDNA (Pikó and Matsumoto, 1976).Plant cells, however, have very few copies of the mtDNA compared with the number of mitochondria. For example, in the Cucurbitaceae, cells containing 110 to 140 copies of the mtDNA have 360 to 1,100 mitochondria (Bendich and Gauriloff, 1984). In Arabidopsis (Arabidopsis thaliana), leaf cells each contain approximately 670 mitochondria (Sheahan et al., 2005) and approximately 50 copies of the mtDNA (Draper and Hays, 2000). Thus, in plant cells, each mitochondrion does not possess one complete copy of the mtDNA, a phenomenon that occurs commonly in somatic cells of plants (Preuten et al., 2010). In addition, work in Arabidopsis, barley (Hordeum vulgare), and tobacco (Nicotiana tabacum) showed that cells in leaves, stems, and roots contain few copies of the mtDNA (40–160), whereas cells in root tips contain more copies (300–450; Preuten et al., 2010). This is consistent with the mitochondrial nucleoid diminishment previously observed in developing root and shoot tips (Fujie et al., 1993, 1994), which suggests that the low copy numbers in plant cells result from a decrease in the mtDNA copy number in nondividing cells during development.One question raised by these findings is whether some mitochondria have complete mtDNAs while others have no mtDNA or whether mitochondria have partial mtDNAs. Using techniques for the direct visualization of small amounts of DNA, our group revealed that up to two-thirds of mitochondria in Arabidopsis mesophyll cells totally lack mtDNA and the remaining one-third of mitochondria possess mtDNA of about 100 kb on average (Wang et al., 2010). This agrees well with a previously reported value for mtDNA copy number (about 50 copies per cell; Draper and Hays, 2000) and is consistent with the idea that plant mitochondrial genomes exist as submolecules smaller than the total genomic sizes (Satoh et al., 1993; Kubo and Newton, 2008). Among plant cells possessing low mtDNA copy numbers, the vegetative cell in the pollen grains is an extreme case; a mature pollen grain of Antirrhinum majus, containing many more mitochondria than a somatic cell, possesses only 16 copies of the mtDNA (Wang et al., 2010). Similar to the changes observed in somatic cells, this extremely low level of mtDNA in pollen vegetative cells results from a rapid decrease in mtDNA copy number during pollen development (Sodmergen et al., 1991; Nagata et al., 1999). In A. majus, the vegetative cell in its initial developmental stage has 482.7 copies of the mtDNA per cell, indicating a 30-fold decrease (482.7/16) during development (Wang et al., 2010). These results from both somatic and reproductive cells led to the intriguing idea that the mtDNA copy number in plants decreases in parallel with cell differentiation, to a very low value, and thus that several mitochondria must share the genetic information carried on a single copy of the mtDNA. Plant cell mitochondria undergo frequent and coupled fusions and divisions, which may explain how mitochondria share this information (Arimura et al., 2004). However, the biological significance of why plant cells lose their mtDNA, and how this benefits these cells, remains unknown. Given that pollen germination, pollen tube elongation, and sperm cell delivery all require energy conversion, the extremely low mtDNA copy numbers, such as in pollen vegetative cells, must not compromise mitochondrial function.The mtDNA copy numbers remain constant in various tissues, however, indicating that cellular mechanisms accurately regulate the levels of mtDNA in relation to cell type (Robin and Wong, 1988; Preuten et al., 2010). In yeast and animals, this regulation involves the core enzymes of mtDNA replication, such as DNA polymerase-γ (Sharief et al., 1999), RNA polymerase (Wanrooij et al., 2008), and mitochondrial helicase (Liu et al., 2009), as well as a group of DNA-binding proteins such as ARS-binding factor2 protein in yeast (Saccharomyces cerevisiae; Newman et al., 1996), MITOCHONDRIAL TRANSCRIPTION FACTOR A (TFAM) in human (Alam et al., 2003), and mitochondrial single-stranded DNA binding protein in Drosophila spp. (Maier et al., 2001). Overexpression of TFAM causes an increase in the mtDNA copy number, and RNA interference of TFAM decreases the mtDNA copy number (Ekstrand et al., 2004; Kanki et al., 2004). Also, the homozygous knockout of TFAM in mouse results in embryos that lack mtDNA and thus fail to survive (Larsson et al., 1998). Clearly, protein factors within mitochondrial nucleoids play a crucial role in the regulation of mtDNA copy number.Recent investigation in Arabidopsis revealed that, similar to the case in yeast and animal cells, DNA polymerase, the core enzyme of mtDNA replication, functions to maintain mtDNA levels in plants. Mutation of Arabidopsis PolIA or PolIB (homologs of bacterial DNA polymerase I) causes a reduction in mtDNA copy number, and double mutation of these proteins is lethal (Parent et al., 2011). Also, an Mg2+-dependent exonuclease, DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1), degrades organelle DNA, helping to produce the proper amounts of mtDNA in pollen cells (Matsushima et al., 2011; Tang et al., 2012). These results provide insights into the molecular control of mtDNA levels in plants, via both mtDNA replication and mtDNA degradation. Except for these enzymes, however, other protein factors (such as TFAM in animals) have not been identified in plants. The DNA-binding proteins, such as MutS Homolog1 (MSH1), Organellar Single-Strand DNA Binding Protein1 (OSB1), Recombinase A1 (RecA1), RecA3, and WHIRLY2 (WHY2), identified so far in plant mitochondria likely participate in genomic maintenance by affecting substoichiometric shifting (Abdelnoor et al., 2003), stoichiometric transmission (Zaegel et al., 2006), genomic stability (Shedge et al., 2007; Odahara et al., 2009), and DNA repair (Cappadocia et al., 2010). None of these plant nucleoid factors (DNA-binding proteins) has been implicated in the control of mtDNA copy number; thus, the mechanisms by which nonenzyme protein factors regulate mtDNA copy number in plants remain obscure.To test whether nucleoid DNA-binding proteins can affect mtDNA copy number, we examined the effect of producing Arabidopsis WHY2, a single-stranded DNA-binding protein (Cappadocia et al., 2010), in the pollen vegetative cell, which generally does not express WHY2 (Honys and Twell, 2004). We found that expression of WHY2 resulted in a 10-fold increase in mtDNA copy number in the pollen vegetative cell. This increase affected mitochondrial respiration, mitochondrial size, and pollen tube growth. Thus, our results uncover a novel function for WHY2, a member of the plant Whirly protein family, in regulating mtDNA amounts and indicate that, in plants, low mtDNA copy number does not compromise mitochondrial function but rather promotes proper mitochondrial function.  相似文献   

17.
To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.  相似文献   

18.
19.

Background

Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria.

Methodology/Principal Findings

Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p<0.0001), with higher specificity (100% vs. 97%; p<0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p<0.0001; likelihood ratio: 7.45 vs. 3.14; p<0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum.

Conclusion

SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria.  相似文献   

20.

Background

Copy number variations (CNV) are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.

Methodology/Principal Findings

Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP) signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn''s disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.

Conclusions/Significance

Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号