首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host‐derived membranes. The mechanisms underlying the biogenesis and functions of host–microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted toward the extrahaustorial membrane (EHM); a host–pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7 GTPase RabG3c, but not a tonoplast‐localized sucrose transporter, is recruited to the EHM, suggesting specific rerouting of vacuole‐targeted late endosomes to a host–pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics toward the haustorial interface. Our work provides insight into the biogenesis of the EHM and reveals dynamic processes that recruit membrane compartments and immune receptors to this host–pathogen interface.   相似文献   

2.
A subset of proteins predominantly associated with early endosomes or implicated in clathrin‐mediated endocytosis can shuttle between the cytoplasm and the nucleus. Although the endocytic functions of these proteins have been extensively studied, much less effort has been expended in exploring their nuclear roles. Membrane trafficking proteins can affect signalling and proliferation and this can be achieved either at a nuclear or endocytic level. Furthermore, some proteins, such as Huntingtin interacting protein 1, are known as cancer biomarkers. This review will highlight the limits of our understanding of their nuclear functions and the relevance of this to signalling and oncogenesis.  相似文献   

3.
近年来细胞穿膜肽(cell-penetrating peptides,CPP)在生物医药领域被广泛应用,它为生物分子的胞内递送提供了有效的策略。关注CPP在肿瘤治疗及疾病诊断中的作用,并重点介绍其在肿瘤靶向治疗和医学影像诊断中的应用及优势。同时,根据CPP在药物传递系统中的特点,改进CPP存在的不足,扩大其联合用药的可能性,这也成为CPP研究的热点。对CPP及其在肿瘤等疾病的诊断及治疗中的应用作一综述,并简述其优化及改进策略,以期促进CPP在临床中的应用。  相似文献   

4.
Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein.  相似文献   

5.
Infection of non-enveloped polyomaviruses depends on an intact microtubular network. Here we focus on mouse polyomavirus (MPyV). We show that the dynamics of MPyV cytoplasmic transport reflects the characteristics of microtubular motor-driven transport with bi-directional saltatory movements. In cells treated with microtubule-disrupting agents, localization of MPyV was significantly perturbed, the virus was retained at the cell periphery, mostly within membrane structures resembling multicaveolar complexes, and at later times post-infection, only a fraction of the virus was found in Rab7-positive endosomes and multivesicular bodies. Inhibition of cytoplasmic dynein-based motility by overexpression of dynamitin affected perinuclear translocation of the virus, delivery of virions to the ER and substantially reduced the numbers of infected cells, while overexpression of dominant-negative form of kinesin-1 or kinesin-2 had no significant impact on virus localization and infectivity. We also found that transport along microtubules was important for MPyV-containing endosome sequential acquisition of Rab5, Rab7 and Rab11 GTPases. However, in contrast to dominant-negative mutant of Rab7 (T22N), overexpression of dominant-negative mutant Rab11 (S25N) did not affect the virus infectivity. Altogether, our study revealed that MPyV cytoplasmic trafficking leading to productive infection bypasses recycling endosomes, does not require the function of kinesin-1 and kinesin-2, but depends on functional dynein-mediated transport along microtubules for translocation of the virions from peripheral, often caveolin-positive compartments to late endosomes and ER – a prerequisite for efficient delivery of the viral genome to the nucleus.  相似文献   

6.
7.

Background

Nanotechnology offers great potential for molecular genetic investigations and potential control of medically important arthropods. Major advances have been made in mammalian systems to define nanoparticle (NP) characteristics that condition trafficking and biodistribution of NPs in the host. Such information is critical for effective delivery of therapeutics and molecules to cells and organs, but little is known about biodistribution of NPs in mosquitoes.

Methodology/Principal Findings

PRINT technology was used to construct a library of fluorescently labeled hydrogel NPs of defined size, shape, and surface charge. The biodistribution (organ, tissue, and cell tropisms and trafficking kinetics) of positively and negatively charged 200 nm x 200 nm, 80 nm x 320 nm, and 80 nm x 5000 nm NPs was determined in adult Anopheles gambiae mosquitoes as a function of the route of challenge (ingestion, injection or contact) using whole body imaging and fluorescence microscopy. Mosquitoes readily ingested NPs in sugar solution. Whole body fluorescence imaging revealed substantial NP accumulation (load) in the alimentary tracts of the adult mosquitoes, with the greatest loads in the diverticula, cardia and foregut. Positively and negatively charged NPs differed in their biodistribution and trafficking. Following oral challenge, negatively charged NPs transited the alimentary tract more rapidly than positively charged NPs. Following contact challenge, negatively charged NPs trafficked more efficiently in alimentary tract tissues. Following parenteral challenge, positively and negatively charged NPs differed in tissue tropisms and trafficking in the hemocoel. Injected NPs were also detected in cardia/foregut, suggesting trafficking of NPs from the hemocoel into the alimentary tract.

Conclusions/Significance

Herein we have developed a tool box of NPs with the biodistribution and tissue tropism characteristics for gene structure/function studies and for delivery of vector lethal cargoes for mosquito control.  相似文献   

8.
Peptides, cleaved by a mixture of carboxypeptidases CPP and CPY, can be detected by MALDI MS and the amino acid sequence thereby determined by calculation of the differences between consecutive peaks. In the present study we have used derivatizations of Lys and Cys to facilitate identification of these residues. Since the mass values do not readily distinguish Lys from Gln, we have converted Lys to homoarginine by guanidination, allowing simple detection of Lys. To identify the Cys positions in peptides that contain cystine, cysteic acid, or carboxymethylcysteine is not possible using CPY and CPP because of the lack of proteolytic cleavage. Instead we find that identification of Cys residues within the sequence can be achieved after conversion to a basic derivative, 4-thialaminine (Thi), by trimethylaminoethylation.  相似文献   

9.
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo’s cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo’s ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.  相似文献   

10.
Breast cancers (BCa) with ERBB2 amplification show rapid tumor growth, increased disease progression, and lower survival rate. Deregulated intracellular trafficking and extracellular vesicle (EVs) release are mechanisms that support cancer progression and resistance to treatments. Neratinib (NE) is a Food and Drug Administration–approved pan-ERBB inhibitor employed for the treatment of ERBB2+ BCa that blocks signaling and causes survival inhibition. However, the effects of NE on ERBB2 internalization, its trafficking to multivesicular bodies (MVBs), and the release of EVs that originate from these organelles remain poorly studied. By confocal and electron microscopy, we observed that low nanomolar doses of NE induced a modest ERBB2 internalization along with an increase of clathrin-mediated endocytosis and of the CD63+ MVB compartment in SKBR-3 cells. Furthermore, we showed in the culture supernatant two distinct EV subsets, based on their size and ERBB2 positivity: small (30–100 nm) ERBB2 EVs and large (>100 nm) ERBB2+ EVs. In particular, we found that NE increased the overall release of EVs, which displayed a reduced ERBB2 positivity compared with controls. Taken together, these results provide novel insight into the effects of NE on ERBB2+ BCa cells that may lead to a reduction of ERBB2 potentially transferred to distant target cells by EVs:  相似文献   

11.
The small molecular weight G-protein RAB7 is localized to both early and late endosomes and has been shown to be critical for trafficking through the endocytic pathway. The role of RAB7 in the endocytic pathway has been controversial, with some groups reporting that it regulates trafficking from early to late endosomes and others ascribing its role to trafficking between late endosomes and lysosomes. In this study, we use RNA interference to identify the exact step RAB7 regulates in the movement of the epidermal growth factor receptor (EGFR) from the cell surface to the lysosome. In the absence of RAB7, trafficking of the EGF·EGFR complex through the early endosome to the late endosome/multivesicular body (LE/MVB) does not change, but exiting from the LE/MVB is blocked. Ultrastructural analysis reveals that RAB7 is not required for formation of intraluminal vesicles of the LE/MVB, since RAB7-deficient cells have an increased number of enlarged LE/MVBs densely packed with intraluminal vesicles. Biochemical data indicate that the EGFR complex is sequestered in these intraluminal vesicles. Together, these data provide evidence that RAB7 is required for the transfer of cargo from the LE/MVB to the lysosome and for endocytic organelle maintenance.The endocytic pathway regulates a number of fundamental cellular processes. These include the uptake of nutrients, immune response, intracellular transport, and regulation of cell surface receptor signaling (1). Disruption of normal endocytic trafficking can affect cellular homeostasis and lead to changes in cell physiology that range from hyperproliferation to cell death. Understanding the molecular regulation of endocytic trafficking will provide a better understanding of basic cell biology as well as identify potential molecular targets for diseases characterized by defects in endocytic trafficking.By following the postinternalization events of cell surface receptors, considerable work has been done to elucidate the molecular details of the endocytic pathway (2). Many cell surface receptors, either constitutively or in response to ligand, use this degradative pathway to regulate receptor and/or ligand levels. Following clathrin-mediated internalization, the endocytic pathway is composed of a series of dynamic stages that progressively shuttle cargo from clathrin-coated vesicles to early endosomes, to late endosomes/multivesicular bodies (LE/MVBs),2 and finally to lysosomes for degradation. Each of these endocytic stages is defined by the morphology and protein composition of the organelle.Endocytic trafficking is coordinated by a variety of proteins that regulate endosome maturation, movement, fission, and fusion. Primary among these are the small molecular weight G-proteins called RABs (3). Rab proteins are members of the Ras superfamily of GTPases that cycle between GTP-bound active and GDP-bound inactive states. The nucleotide bound state of the RAB determines whether it can interact with downstream effectors. Individual RAB proteins have been shown to act as hubs that regulate distinct trafficking steps temporally and spatially by facilitating vesicle motility, tethering, and fusion (4, 5).Rab7 localizes to both the early endosome and the LE/MVB and has been shown to be a necessary component of endocytic trafficking and lysosomal degradation (6). However, there is no consensus as to the exact molecular function of RAB7 in the endocytic pathway. Some reports have implicated RAB7 in regulating cargo movement out of early endosomes (710), whereas others have reported it to function in the more distal process of lysosomal delivery from LE/MVBs (11, 12). Live cell imaging indicates that RAB7 replaces RAB5 as cargo is trafficked through endocytic compartments (10, 13). However, it remains unclear if the presence of RAB7 indicates that it is immediately functional or if it is positioning itself to be used later in the endocytic pathway. Alternatively, as has been proposed in Caenorhabditis elegans, Rab7 may regulate multiple endocytic steps (14).Previous attempts to understand the function of RAB7 have relied primarily on overexpression of wild type or mutant RAB7 (11, 12, 15, 16). This approach carries the caveat that high levels of the exogenous protein increase the potential for nonphysiological interactions between an overexpressed RAB and downstream RAB effectors. This concern was highlighted by a recent analysis that showed promiscuity between a variety of RABs and RAB effectors (17). To overcome these issues, we have used the alternative approach of depleting endogenous RAB7 with siRNA and examining EGF·EGFR endocytic trafficking in the absence of RAB7.In this study, we show that RAB7 is required for lysosomal degradation of the EGF·EGFR complex. Upon dissecting the endocytic pathway of RAB7-deficient cells, we find that cargo can proceed through EEA1 (early endosome antigen 1)-positive early endosomes and into CD63-positive LE/MVB. However, in the absence of RAB7, the EGF·EGFR complex does not exit the LE/MVB and is retained in its intraluminal vesicles. This disrupted trafficking is mirrored by an altered equilibrium between the endocytic organelles, as indicated by the accumulation of enlarged, densely packed LE/MVB and a decrease in the size and number of lysosomes. Based on these data, we have generated a model that RAB7 is dispensable for EGFR endocytic trafficking from the cell surface to the intraluminal vesicles of the LE/MVB but is required for fusion of the LE/MVB and the lysosome.  相似文献   

12.
Furin catalyzes the proteolytic maturation of many proproteins within the trans-Golgi network (TGN)/endosomal system. Furin's cytosolic domain (cd) directs both the compartmentalization to and transit between its manifold processing compartments (i.e., TGN/biosynthetic pathway, cell surface, and endosomes). Here we report the identification of the first furin cd sorting protein, ABP-280 (nonmuscle filamin), an actin gelation protein. The furin cd was used as bait in a yeast two-hybrid screen to identify ABP-280 as a furin-binding protein. Binding analyses in vitro and coimmunoprecipitation studies in vivo showed that furin and ABP-280 interact directly and that ABP-280 tethers furin molecules to the cell surface. Quantitative analysis of both ABP-280-deficient and genetically replete cells showed that ABP-280 modulates the rate of internalization of furin but not of the transferrin receptor, a cycling receptor. However, although ABP-280 directs the rate of furin internalization, the efficiency of sorting of the endoprotease from the cell surface to early endosomes is independent of expression of ABP-280. By contrast, efficient sorting of furin from early endosomes to the TGN requires expression of ABP-280. In addition, ABP-280 is also required for the correct localization of late endosomes (dextran bead uptake) and lysosomes (LAMP-1 staining), demonstrating a pleiotropic role for this actin binding protein in the organization of cellular compartments and directing protein traffic. Finally, and consistent with the trafficking studies on furin, we showed that ABP-280 modulates the processing of furin substrates in the endocytic but not the biosynthetic pathways. The novel roles of ABP-280 and the cytoskeleton in the sorting of furin in the TGN/ endosomal system and the formation of proprotein processing compartments are discussed.  相似文献   

13.
利用噬菌体随机十二肽库对羟基磷灰石进行结合肽筛选,经4轮生物淘洗和选择、噬菌体扩增和DNA测序,获得一组多肽序列,其中含有较高比例的脯氨酸、亮氨酸、谷氨酸、谷氨酰胺以及疏水氨基酸。经Blast分析、CLUSTALW多重序列比对推得羟基磷灰石结合肽可能的结合基序为VLPP、LP(X)6PL/X、PP(X)4~6P,(X为任意氨基酸)。认为脯氨酸等氨基酸的高比例特性以及结合基序特征可以很好地解释羟基磷灰石的生物可利用性和安全性。在生物体中未发现结合肽有价值的相似DNA编码序列和多肽、蛋白质序列。噬菌体单克隆反筛功能测定进一步确定了相关序列对羟基磷灰石的结合能力。  相似文献   

14.
Two weeks of feeding soy peptides containing 2% collagen peptides increased the levels of type I and III tropocollagen and their mRNAs. In contrast, the diet did not increase the mRNA levels of rat hyaluronan synthases, serine palmitoyltransferase (the rate-limiting enzyme of ceramide synthesis), and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (the key enzyme of cholesterol synthesis). These results suggest that feeding of soy peptides with collagen peptides specifically enhanced the tropocollagen level in the skin.  相似文献   

15.
Cell-penetrating peptides (CPPs) are a group of short, membrane-permeable cationic peptides that represent a nonviral technology for delivering nanomaterials and macromolecules into live cells. In this study, two arginine-rich CPPs, HR9 and IR9, were found to be capable of entering rotifers. CPPs were able to efficiently deliver noncovalently associated with cargoes, including plasmid DNAs, red fluorescent proteins (RFPs), and semiconductor quantum dots, into rotifers. The functional reporter gene assay demonstrated that HR9-delivered plasmid DNAs containing the enhanced green fluorescent protein and RFP coding sequences could be actively expressed in rotifers. The 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay further confirmed that CPP-mediated cargo delivery was not toxic to rotifers. Thus, these two CPPs hold a great potential for the delivery of exogenous genes, proteins, and nanoparticles in rotifers.  相似文献   

16.
  1. Download : Download high-res image (57KB)
  2. Download : Download full-size image
Highlights
  • •Deep learning models for prediction of LC-MS/MS properties.
  相似文献   

17.
Poly(N-isopropylacrylamide-2-acrylamido-2-methyl-1-propanesulfonate) [poly(NIPAm-AMPS)] nanoparticles can be cross-linked with hydrolytically degradable N,O-dimethacryloyl hydroxylamine (DMHA) in order to yield a pH-sensitive drug delivery system that slowly erodes above pH 5.0. Varying the composition of degradable DMHA and nondegradable MBA cross-linking allows for engineered variation of particle size and degradation kinetics. Utilizing sulfated comonomer AMPS provides for increased passive loading of anti-inflammatory mitogen-activated protein kinase-activated protein kinase 2 (MK2)-inhibiting cell-penetrating peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) between 24.3% and 29.2% (w/w) for nanoparticles with 5 mol % cross-linker. Nanoparticles were shown to be nontoxic in vitro and were effective at delivering a therapeutically active dose of KAFAK to THP1 human monocytes to suppress tumor necrosis factor α (TNF-α) expression during lipopolysaccharide (LPS)-induced inflammation. This thermosensitive nanoparticle system is an excellent platform for passive diffusive loading in deionized water and release in physiologically relevant ionic strength media of environmentally sensitive peptide therapeutics.  相似文献   

18.
乳蛋白生物活性肽的序列及其功能   总被引:3,自引:0,他引:3  
石岗 《动物学杂志》2002,37(2):80-84
乳蛋白经消化产生的肽类除了具有营养作用外,还具有多种生物活性,包括阿片肽和阿片拮抗肽活性及免疫调节,抗高血压、抗血栓、抗菌抗病毒,促进矿质元素吸收,防止腹泻等作用。本文对近几年发现的乳蛋白生物活性肽的序列结构及功能做了综述。  相似文献   

19.
20.
Quorum sensing peptides (QSPs) are the signaling molecules used by the Gram-positive bacteria in orchestrating cell-to-cell communication. In spite of their enormous importance in signaling process, their detailed bioinformatics analysis is lacking. In this study, QSPs and non-QSPs were examined according to their amino acid composition, residues position, motifs and physicochemical properties. Compositional analysis concludes that QSPs are enriched with aromatic residues like Trp, Tyr and Phe. At the N-terminal, Ser was a dominant residue at maximum positions, namely, first, second, third and fifth while Phe was a preferred residue at first, third and fifth positions from the C-terminal. A few motifs from QSPs were also extracted. Physicochemical properties like aromaticity, molecular weight and secondary structure were found to be distinguishing features of QSPs. Exploiting above properties, we have developed a Support Vector Machine (SVM) based predictive model. During 10-fold cross-validation, SVM achieves maximum accuracy of 93.00%, Mathew’s correlation coefficient (MCC) of 0.86 and Receiver operating characteristic (ROC) of 0.98 on the training/testing dataset (T200p+200n). Developed models performed equally well on the validation dataset (V20p+20n). The server also integrates several useful analysis tools like “QSMotifScan”, “ProtFrag”, “MutGen” and “PhysicoProp”. Our analysis reveals important characteristics of QSPs and on the basis of these unique features, we have developed a prediction algorithm “QSPpred” (freely available at: http://crdd.osdd.net/servers/qsppred).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号