首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growing number of reports on the effective cargo delivery by cell-penetrating peptides (CPPs) has extensively widened our knowledge about the mechanisms involved in CPP-mediated delivery. However, the data available on the internalization mode of CPP–cargo complexes are often conflicting and/or equivocal. Moreover, the intracellular trafficking of CPP–cargo complexes is, to date, relatively unexplored resulting in only minimal information about what is really happening to the complexes inside the cell. This review focuses on defining the endocytic pathways engaged in the transduction of CPP–cargo complexes and seeks to determine the extent of different endocytic routes required for effective uptake. In addition, the intracellular pathways utilized during the trafficking and sorting of CPP–cargo complexes as well as the ultimate fate of the complexes inside cells will be discussed.  相似文献   

2.
Chen YJ  Liu BR  Dai YH  Lee CY  Chan MH  Chen HH  Chiang HJ  Lee HJ 《Gene》2012,493(2):201-210
Most bioactive macromolecules, such as protein, DNA and RNA, basically cannot permeate into cells freely from outside the plasma membrane. Cell-penetrating peptides (CPPs) are a group of short peptides that possess the ability to traverse the cell membrane and have been considered as candidates for mediating gene and drug delivery into living cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9 and PR9) are able to form stable complexes with plasmid DNA and deliver DNA into insect Sf9 cells in a noncovalent manner. The transferred plasmid DNA containing enhanced green fluorescent protein (EGFP) and red fluorescent protein (RFP) coding regions could be expressed in cells functionally assayed at both the protein and RNA levels. Furthermore, treatment of cells with CPPs and CPP/DNA complexes resulted in a viability of 84-93% indicating these CPPs are not cytotoxic. These results suggest that arginine-rich CPPs appear to be a promising tool for insect transgenesis.  相似文献   

3.
Dai YH  Liu BR  Chiang HJ  Lee HJ 《Gene》2011,489(2):89-97
Owing to the cell membrane barriers, most macromolecules and hydrophilic molecules could not freely enter into living cells. However, cell-penetrating peptides (CPPs) have been discovered that can translocate themselves and associate cargoes into the cytoplasm. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9 and PR9) can form stable complexes with plasmid DNA at the optimized nitrogen/phosphate ratio of 3 and deliver plasmid DNA into Paramecium caudatum in a noncovalent manner. Accordingly, the transported plasmid encoding the green fluorescent protein (GFP) gene could be expressed in cells functionally assayed at both the protein and DNA levels. The efficiency of gene delivery varied among these CPPs in the order of HR9 > PR9 > SR9. In addition, these CPPs and CPP/DNA complexes were not cytotoxic in Paramecium detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diohenyltetrazolium bromide (MTT) assay. Thus, these results suggest that the functionality of arginine-rich CPPs offers an efficient and safe tool for transgenesis in eukaryotic protozoans.  相似文献   

4.
Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides that can be used to deliver a variety of cargos into cells. However, it is still debated which routes CPPs employ to gain access to intracellular compartments. To assess this, most previously conducted studies have relied on information which is gained by using fluorescently labeled CPPs. More relevant information whether the internalized conjugates are biologically available has been gathered using end-point assays with biological readouts. Uptake kinetic studies have shed even more light on the matter because the arbitrary choice of end-point might have profound effect how the results could be interpreted. To elucidate uptake mechanisms of CPPs, here we have used a bioluminescence based assay to measure cytosolic delivery kinetics of luciferin-CPP conjugates in the presence of endocytosis inhibitors. The results suggest that these conjugates are delivered into cytosol mainly via macropinocytosis; clathrin-mediated endocytosis and caveolae/lipid raft dependent endocytosis are involved in a smaller extent. Furthermore, we demonstrate how the involved endocytic routes and internalization kinetic profiles can depend on conjugate concentration in case of certain peptides, but not in case of others. The employed internalization route, however, likely dictates the intracellular fate and subsequent trafficking of internalized ligands, therefore emphasizing the importance of our novel findings for delivery vector development.  相似文献   

5.
小RNA药物应用于临床的主要技术瓶颈在于如何高效、低毒地将小RNA分子传递到它发挥功能的场所.基于细胞穿透肽在小RNA透皮给药的临床应用中所取得的进展,本文系统评述了近年来细胞穿透肽在小RNA的体内、体外传递方面的研究动态,分析了细胞穿透肽的结构改造对肽/小RNA复合物转染进入细胞发挥功能的影响,展望了细胞穿透肽作为小RNA的体内药物传递载体的发展方向.  相似文献   

6.
Cell penetrating peptides (CPPs) are short amphipathic and cationic peptides that are rapidly internalized across cell membranes. They can be used to deliver molecular cargo, such as imaging agents (fluorescent dyes and quantum dots), drugs, liposomes, peptide/protein, oligonucleotide/DNA/RNA, nanoparticles and bacteriophage into cells. The utilized CPP, attached cargo, concentration and cell type, all significantly affect the mechanism of internalization. The mechanism of cellular uptake and subsequent processing still remains controversial. It is now clear that CPP can mediate intracellular delivery via both endocytic and non-endocytic pathways. In addition, the orientation of the peptide and cargo and the type of linkage are likely important. In gene therapy, the designed cationic peptides must be able to 1) tightly condense DNA into small, compact particles; 2) target the condensate to specific cell surface receptors; 3) induce endosomal escape; and 4) target the DNA cargo to the nucleus for gene expression. The other studies have demonstrated that these small peptides can be conjugated to tumor homing peptides in order to achieve tumor-targeted delivery in vivo. On the other hand, one of the major aims in molecular cancer research is the development of new therapeutic strategies and compounds that target directly the genetic and biochemical agents of malignant transformation. For example, cell penetrating peptide aptamers might disrupt protein-protein interactions crucial for cancer cell growth or survival. In this review, we discuss potential functions of CPPs especially for drug and gene delivery in cancer and indicate their powerful promise for clinical efficacy.  相似文献   

7.
Liu BR  Lin MD  Chiang HJ  Lee HJ 《Gene》2012,505(1):37-45
Transgenesis is a process that introduces exogenous nucleic acids into the genome of an organism to produce desired traits or evaluate function. Improvements of transgenic technologies are always important pursuit in the last decades. Recently, cell-penetrating peptides (CPPs) were studied as shuttles that can internalize into cells directly and serve as carriers to deliver different cargoes into cells. In the present study, we evaluate whether arginine-rich CPPs can be used for gene delivery into human cells in a noncovalent fashion. We demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) are able to transport plasmid DNA into human A549 cells. For the functional gene assay, the CPP-delivered plasmid DNA containing the enhanced green fluorescent protein (EGFP) coding sequence could be actively expressed in cells. The treatment of calcium chloride did not facilitate the CPP-mediated transfection efficiency, but enhance the gene expression intensity. Mechanistic studies further revealed that HR9/DNA complexes mediate the direct membrane translocation pathway for gene delivery. Our results suggest that arginine-rich CPPs, especially HR9, appear to be a high efficient and promising tool for gene transfer.  相似文献   

8.
Cell transduction pathways of transportans   总被引:1,自引:0,他引:1  
Attempts to unravel the cell translocation mechanism of a growing number of cell-penetrating peptides (CPP) have revealed molecular determinants essential for internalization ability. The peptide sequence and the charge have been proposed to be the major factors in determining the membrane interaction mode and subsequent internalization pathway. Recent research in this field has shifted to search and design of novel CPPs with predefined vectorial properties and elucidation of the mechanism of cell entry of CPPs with high cargo delivery efficiency. Here we present a map of interaction modes with cell surface and intracellular traffic of transportan and its analogue TP10 complexed with fluorescently labeled avidin or streptavidin-gold conjugates. The protein cargo complexed with either peptide is transduced into HeLa and Bowes cells mostly in the endocytic vesicles with heterogeneous morphology and size as demonstrated by transmission electron microscopy (TEM) and confocal laser scanning fluorescence microscopy. Most of the induced vesicles are large, with 0.5-2 mum diameter, probably macropinosomes, but the complexes are present also in smaller vesicles, suggesting involvement of different pathways. Later the majority of complexes are translocated from the cell periphery into vesicles of perinuclear region and partly to lysosomes. A fraction of transportan-streptavidin complexes is present also freely in cytoplasm, both in the close vicinity of plasma membrane and more centrally, suggesting the escape from endosomal vesicles, since vesicles with discontinuous membrane were also detected by TEM. The cell-translocation process of transportan-protein complexes is temperature dependent and strongly inhibited at 8-10 degrees C and blocked at 4 degrees C when only interaction with the plasma membrane takes place.  相似文献   

9.
Arginine-rich cell-penetrating peptides (CPPs) are promising carriers for the intracellular delivery of various bioactive molecules. However, many ambiguities remain about the molecular interplays on cell surfaces that ultimately lead to endocytic uptake of CPPs. By treatment of cells with octaarginine (R8), enhanced clustering of syndecan-4 on plasma membranes and binding of protein kinase Cα (PKCα) to the cytoplasmic domain of syndecan-4 were observed; these events potentially lead to the macropinocytic uptake of R8. The cytoplasmic V domain of syndecan-4 made a significant contribution to the cellular uptake of R8, whereas the cytoplasmic C1 and C2 domains were not involved in the process.  相似文献   

10.
We utilize cell penetrating peptide functionalized QDs as specific vectors for the intracellular delivery of model fluorescent protein cargos. Multiple copies of two structurally diverse fluorescent proteins, the 27 kDa monomeric yellow fluorescent protein and the 240 kDa multichromophore b-phycoerythrin complex, were attached to QDs using either metal-affinity driven self-assembly or biotin-Streptavidin binding, respectively. Cellular uptake of these complexes was found to depend on the additional presence of cell-penetrating peptides within the QD-protein conjugates. Once inside the cells, the QD conjugates were mostly distributed within endolysosomal compartments, indicating that intracellular delivery of both QD assemblies was primarily driven by endocytotic uptake. Cellular microinjection of QD-fluorescent protein assemblies was also utilized as an alternate delivery strategy that could bypass the endocytic pathway. Simultaneous signals from both the QDs and the fluorescent proteins allowed verification of their colocalization and conjugate integrity upon delivery inside live cells. Due to their intrinsic fluorescence properties, this class of proteins provides a unique tool to test the ability of QDs functionalized with cell penetrating peptides to mediate the intracellular delivery of both small and large size protein cargos. Use of QD-peptide/fluorescent protein vectors may make powerful tools for understanding the mechanisms of nanoparticle-mediated drug delivery.  相似文献   

11.
Pandey KN 《Peptides》2005,26(6):985-1000
One of the principal loci involved in the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), whose ligand-binding efficiency and GC catalytic activity vary remarkably in different target cells and tissues. In its mature form, NPRA resides in the plasma membrane and contains an extracellular ligand-binding domain, a single transmembrane region, and the intracellular protein kinase-like homology domain (KHD) and guanylyl cyclase (GC) catalytic domain. NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. Binding of ligand to NPRA triggers a complex array of signal transduction events and accelerates the endocytosis. The endocytic transport is important in regulating signal transduction, formation of specialized signaling complexes, and modulation of specific components of internalization events. The present review describes the experiments which reveal the internalization of ligand-receptor complexes of NPRA, receptor trafficking and recycling, and delivery of both ligand-receptor molecules into subcellular compartments. The ligand-receptor complexes of NPRA are finally degraded within the lysosomes. The experimental evidence provides a consensus forum, which establishes the endocytosis, cellular trafficking, sequestration, and metabolic processing of ANP/NPRA complexes in the intact cells. The discussion is afforded to address the experimental insights into the mechanisms that cells utilize in modulating the delivery and metabolic processing of ligand-bound NPRA into the cell interior.  相似文献   

12.
Ziegler A  Seelig J 《Biochemistry》2011,50(21):4650-4664
Many cell-penetrating peptides (CPPs) bind to glycosaminoglycans (GAG) located on the extracellular side of biological tissues. CPP binding to the cell surface is intimately associated with clustering of surface molecules and is usually followed by uptake into the cell interior. We have investigated the uptake mechanism by comparing CPPs which bind, but cannot induce, GAG clustering with those which do induce GAG clustering. We have synthesized the tryptophan-labeled CPP nona-l-arginine (WR(9)) and its monodispersely PEGylated derivate (PEG(27)-WR(9)) and have compared them with respect to glycan binding, glycan clustering, and their uptake into living cells. Both CPPs bind to the GAG heparin with high affinity (K(D) ~ 100 nM), but the PEGylation prevents the GAG clustering. Thus, it is possible to uncouple and analyze the contributions of GAG binding and GAG clustering to the biological CPP uptake. The uptake of PEG-WR(9) into CH-K1 cells is confined to intracellular vesicles, where colocalization with transferrin attests to an endocytic uptake. Transfection experiments with plasmid DNA for GFP revealed poor GFP expression, suggesting that endocytic uptake of PEG-WR(9) is compromised by insufficient release from endocytic vesicles. In contrast, WR(9) shows two uptake routes. At low concentration (<5 μM), WR(9) uptake occurs mainly through endocytosis. At higher concentration, WR(9) uptake is greatly enhanced, showing a diffuse spreading over the entire cytoplasm and nucleus-a phenomenon termed "transduction". Transduction of WR(9) leads to a higher GFP expression as compared to PEG-WR(9) endocytosis but also damages the plasma membrane as evidenced by SYTOX Green staining. The results suggest that GAG binding without and with GAG clustering induce two different pathways of CPP uptake.  相似文献   

13.
JS Liou  BR Liu  AL Martin  YW Huang  HJ Chiang  HJ Lee 《Peptides》2012,37(2):273-284
Endocytosis has been proposed as one of the primary mechanisms for cellular entry of cell-penetrating peptides (CPPs) and their cargoes. However, a major limitation of endocytic pathway is entrapment of the CPP-cargo in intracellular vesicles from which the cargo must escape into the cytoplasm to exert its biological activity. Here we demonstrate that a CPP tagged with an endosomolytic fusion peptide derived from the influenza virus hemagglutinin-2 (HA2) remarkably enhances the cytosolic delivery of proteins in human A549 cells. To determine the endosome-disruptive effects, recombinant DNA plasmids containing coding sequences of HA2, CPPs and red fluorescent proteins (RFPs) were constructed. The fusion proteins were purified from plasmid-transformed Escherichia coli, and their effects on protein transduction were examined using live cell imaging and flow cytometry. Our data indicate that endocytosis is the major route for cellular internalization of CPP-HA2-tagged RFP. Mechanistic studies revealed that the fusogenic HA2 peptide dramatically facilitates CPP-mediated protein entry through the release of endocytosed RFPs from endosomes into the cytoplasm. Furthermore, incorporating the HA2 fusion peptide of the CPP-HA2 fusion protein improved cytosolic uptake without causing cytotoxicity. These findings strongly suggest that the CPP-HA2 tag could be an efficient and safe carrier that overcomes endosomal entrapment of delivered therapeutic drugs.  相似文献   

14.
In fungal hyphal cells, intracellular membrane trafficking is constrained by the relatively long intracellular distances and the mode of growth, exclusively by apical extension. Endocytosis plays a key role in hyphal tip growth, which involves the coupling of secretory membrane delivery to the apical region with subapical compensatory endocytosis. However, the identity, dynamics and function of filamentous fungal endosomal compartments remain largely unexplored. Aspergillus nidulans RabARab5 localizes to a population of endosomes that show long range bidirectional movement on microtubule (MT) tracks and are labelled with FM4-64 shortly after dye internalization. RabARab5 membranes do not overlap with largely static mature endosomes/vacuoles. Impaired delivery of dynein to the MT plus ends or downregulation of cytoplasmic dynein using the dynein heavy chain nudA1ts mutation results in accumulation of RabARab5 endosomal membranes in an abnormal NudA1 compartment at the tip, strongly supporting the existence in A. nidulans hyphal tips of a dynein loading region. We show that the SynA synaptobrevin endocytic recycling cargo traffics through this region, which strongly supports the contention that polarized hyphal growth involves the association of endocytic recycling with the plus ends of MTs located at the tip, near the endocytic internalization collar.  相似文献   

15.
A number of cell-penetrating peptides (CPPs) have been characterized and their usefulness as delivery tools has been clarified. As one of the CPPs, model amphipathic peptide (MAP) was developed by integrating both hydrophobic and hydrophilic amino acids in its sequence. In our previous work, we designed MAP(Aib) by replacing five alanine (Ala) residues on the hydrophobic face of the helix in the MAP sequence with α-aminoisobutyric acid (Aib) residues, and the replacement resulted in higher helix propensity, stronger resistance to protease, and higher cell membrane permeability than MAP. As a next step, we examined the efficiency of oligonucleotide (ODN) delivery into cells by MAP(Aib) in comparison with that by MAP. The electrostatically formed MAP(Aib)/ODN complex was more easily taken up by cells than the MAP/ODN complex, and the ODN delivery by MAP(Aib) was via an endocytic pathway. We demonstrated that the incorporation of Aib residues into CPPs enhances the delivery of hydrophilic molecules, such as ODN, into cells.  相似文献   

16.
Cell-penetrating peptides (CPPs) are an attractive tool for delivering membrane-impermeable compounds, including anionic biomacromolecules such as DNA and RNA, into living cells. Amphipathic helical peptides composed of hydrophobic amino acids and cationic amino acids are typical CPPs. In the current study, we designed amphipathic helical 12-mer peptides containing α,α-disubstituted α-amino acids (dAAs), which are known to stabilize peptide secondary structures. The dominant secondary structures of peptides in aqueous solution differed according to the introduced dAAs. Peptides containing hydrophobic dAAs and adopting a helical structure exhibited a good cell-penetrating ability. As an application of amphipathic helical peptides, small interfering RNA (siRNA) delivery into living human hepatoma cells was investigated. One of the peptides containing dAAs dipropylglycine formed stable complexes with siRNA at appropriate zeta-potential and size for intracellular siRNA delivery. This peptide showed effective RNA interference efficiency at short peptide length and low concentrations of peptide and siRNA. These findings will be helpful for the design of amphipathic helical CPPs as intracellular siRNA delivery.  相似文献   

17.
Cell-penetrating peptides (CPPs) constitute a family of peptides with the characteristic ability to cross biological membranes and deliver cargo into the intracellular milieu. Several CPPs have been proposed for delivery of polypeptides and proteins into cells through either of two strategies: covalent or complexed in a non-covalent fashion. Members of the PEP family are primary amphipathic peptides which have been shown to deliver peptides and proteins into a wide variety of cells through formation of non-covalent complexes. CADY is a secondary amphipathic peptide which has been demonstrated to deliver short nucleic acids, in particular siRNA with high efficiency. Here we review the characteristics of the PEP and CADY carriers and describe a novel derivative of CADY termed CADY2, which also presents sequence similarities to Pep1. We have compared Pep1, CADY and CADY2 in their efficiency to interact with and internalize short fluorogenic peptides and proteins into cultured cells, and provide evidence that CADY2 can interact with proteins and peptides and deliver them efficiently into living cells, similar to Pep1, but in contrast to CADY which is unable to deliver any peptide, even short negatively charged peptides. This is the first study to investigate the influence of the cargo on the interactions between PEP and CADY carriers, thereby providing novel insights into the physicochemical parameters underlying interactions and cellular uptake of peptides and proteins by these non-covalent CPPs.  相似文献   

18.
The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers that mediate transport from a donor membrane to a target organellar membrane. AP complexes play important roles in maintaining the normal physiological function of eukaryotic cells. Dysfunction of AP complexes has been implicated in a variety of inherited disorders, including: MEDNIK (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia) syndrome, Fried syndrome, HPS (Hermansky–Pudlak syndrome) and HSP (hereditary spastic paraplegia).  相似文献   

19.
Although cell-penetrating peptides (CPP) facilitate endocytic uptake of proteins, little is known regarding the extent to which CPPs facilitate protein cargo exit from endocytic vesicles for targeting to other intracellular sites. Since the plasma membrane and less so intracellular membranes contain cholesterol, the fluorescent sterol analogues dansyl-cholestanol (DChol) and dehydroergosterol (DHE) were used to monitor the uptake and intracellular distribution of fluorescent-tagged acyl coenzyme A binding protein (ACBP) into COS-7 cells and rat hepatoma cells. Confocal microscopy colocalized DChol and Texas Red-ACBP (TR-ACBP) with markers for the major endocytosis pathways, especially fluorescent-labeled cholera toxin (marker of ganglioside GM1 in plasma membrane lipid rafts) and dextran (macropinocytosis marker), but less so with transferrin (clathrin-mediated endocytosis marker). These findings were confirmed by multiphoton laser scanning microscopy colocalization of TR-ACBP with DHE (naturally-fluorescent sterol) and by double immunofluorescence labeling of native endogenous ACBP. Serum greatly and Pep-1 further 2.4-fold facilitated uptake of TR-ACBP, but neither altered the relative proportion of TR-ACBP colocalized with membranes/organelles (nearly 80%) vs cytoplasm and/or nucleoplasm (20%). Interestingly, Pep-1 selectively increased TR-ACBP associated with mitochondria while concomitantly decreasing that in endoplasmic reticulum. In summary, fluorescent sterols (DChol, DHE) were useful markers for comparing the distributions of both transported and endogenous proteins. Pep-1 modestly enhanced the translocation and altered the intracellular targeting of exogenous-delivered (TR-ACBP) in living cells.  相似文献   

20.
Cell penetrating peptides (CPPs) have been shown to enhance the cellular uptake of antisense oligonucleotides (AOs). However, the effectiveness of the CPPs for cytoplasmic or nuclear delivery of therapeutic AOs must take into account the possible entrapment of the CPP-AO conjugates in endosomes/lysosomes and the overall stability of the CPP-AO conjugates to enzymes. This includes the stabilities of the CPPs and AOs themselves as well as the linkage between them. In this study, we investigated the effects of several structural features of arginine-rich CPPs on the metabolic stability of CPP conjugated to phosphorodiamidate morpholino oligomers (PMOs) in human serum and in cells. Those structural features include amino acid configurations (d or l), incorporation of non-alpha-amino acids, peptide sequences, and types of linkages between CPPs and PMOs. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we found that the stability of the CPP portion was varied although the PMO portion of the conjugate was completely stable both in cells and in human serum. d-Configuration CPPs were completely stable, while l-CPPs were degraded in both serum and HeLa cells. Insertions of 6-aminohexanoic acid residues (X) into an R8 peptide increased the corresponding CPP's serum stability with the degree of stability being dependent upon the positions of X. However, X-containing CPPs were degraded rapidly intracellularly. Insertions of beta-alanines (B) into the R8 peptide increased its serum stability and intracellular stability. An amide or a maleimide linkage was stable in both serum and cells; however, an unhindered disulfide linkage was not stable in either. By using fluorescent microscopy, flow cytometry, and an antisense splice correction assay, the cellular uptakes of an X-containing conjugate and its fragments were compared to their antisense activities. We found that a large fraction of the conjugate was trapped within vesicles and the degraded fragments cannot escape from the vesicles. This study indicates that the incorporation of non-alpha-amino acids into l-CPPs can increase the metabolic stability of CPP-PMOs without using costly d-CPPs. However, the position and type of non-alpha-amino acids affect the degree of stability extracellularly and intracellularly. In addition, this study reveals that the degradation of an X-containing CPP-PMO conjugate is a more rapid process than degradation of a B-containing conjugate. Last, the endosomal/lysosomal trapping limits the effectiveness of a CPP-PMO conjugate, and the stability of the CPP is one of the factors affecting the ability of the conjugate to escape the endosomes/lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号