首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
B cell maturation and B cell-mediated antibody response require programmed DNA modifications such as the V(D)J recombination, the immunoglobulin (Ig) class switch recombination, and the somatic hypermutation to generate functional Igs. Many protein factors involved in DNA damage repair have been shown to be critical for the maturation and activation of B cells. Rad9 plays an important role in both DNA repair and cell cycle checkpoint control. However, its role in Ig generation has not been reported. In this study, we generated a conditional knock-out mouse line in which Rad9 is deleted specifically in B cells and investigated the function of Rad9 in B cells. The Rad9−/− B cells isolated from the conditional knock-out mice displayed impaired growth response and enhanced DNA lesions. Impaired Ig production in response to immunization in Rad9−/− mice was also detected. In addition, the Ig class switch recombination is deficient in Rad9−/− B cells. Taken together, Rad9 plays dual roles in generating functional antibodies and in maintaining the integrity of the whole genome in B cells.  相似文献   

4.
PP4 is a serine/threonine phosphatase required for immunoglobulin (Ig) VDJ recombination and pro-B/pre-B cell development in mice. To elucidate the role of PP4 in mature B cells, we ablated the catalytic subunit of murine PP4 in vivo utilizing the CD23 promoter and cre-loxP recombination and generated CD23crePP4F/F mice. The development of follicular and marginal zone B cells was unaffected in these mutants, but the proliferation of mature PP4-deficient B cells stimulated by in vitro treatment with either anti-IgM antibody (Ab) or LPS was partially impaired. Interestingly, the induction of CD80 and CD86 expression on these stimulated B cells was normal. Basal levels of serum Igs of all isotypes were strongly reduced in CD23crePP4F/F mice, and their B cells showed a reduced efficiency of class switch recombination (CSR) in vitro upon stimulation by LPS or LPS plus IL-4. When CD23crePP4F/F mice were challenged with either the T cell-dependent antigen TNP-KLH or the T cell-independent antigen TNP-Ficoll, or by H1N1 virus infection, the mutant animals failed to form germinal centers (GCs) in the spleen and the draining mediastinal lymph nodes, and did not efficiently mount antigen-specific humoral responses. In the resting state, PP4-deficient B cells exhibited pre-existing DNA fragmentation. Upon stimulation by DNA-damaging drug etoposide in vitro, mutant B cells showed increased cleavage of caspase 3. In addition, the mutant B cells displayed impaired CD40-mediated MAPK activation, abnormal IgM-mediated NF-κB activation, and reduced S phase entry upon IgM/CD40-stimulation. Taken together, our results establish a novel role for PP4 in CSR, and reveal crucial functions for PP4 in the maintenance of genomic stability, GC formation, and B cell-mediated immune responses.  相似文献   

5.
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.In a population of organisms, it is crucial to maintain the integrity of genome among individuals as well as shuffle genetic information at the population level. To maintain such genetic integrity, cells have evolved elaborate mechanisms such as base excision repair (BER; Hegde et al., 2008), nucleotide excision repair (NER; Shuck et al., 2008), homologous recombination (HR; Li and Heyer, 2008) repair, and nonhomologous end joining (Weterings and Chen, 2008) pathways to repair diverse types of DNA damage. To allow for variation, however, organisms utilize meiosis to shuffle genetic material so as to increase genetic diversity in populations and in the species.DNA double-strand break (DSB) repair is particularly important in maintaining the integrity of genome among individuals and shuffling genetic information among population, because DSBs are generated not only in meiotic cells but also from the action of certain endogenous or exogenous DNA-damaging agents and during repair of other kinds of DNA lesions by NER or BER (West et al., 2004; Bleuyard et al., 2006). The past decade has witnessed an explosion in understanding of this complex process by using yeast (Saccharomyces cerevisiae) as a model organism (Aylon and Kupiec, 2004). Cells can repair DSBs by the relatively inaccurate process of rejoining the two broken ends directly (i.e. nonhomologous end joining) or much more accurately by HR (Bleuyard et al., 2006; Wyman and Kanaar, 2006). These two pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type (Shrivastav et al., 2008). According to the current general model for meiotic DSB repair (Bishop and Zickler, 2004; Ma, 2006; San Filippo et al., 2008), when DSBs occur the MRN complex (composed of Mre11, Rad50, and NBS1) resects the DSBs to generate 5′→3′ single-stranded DNA (ssDNA) ends. Subsequently, the replication protein A (RPA) protein complex binds to the ssDNA ends to protect them from attack by endogenous exonucleases; then, in concert with catalysis by Rad52, Rad55, and Rad57, the recombinase Rad51 displaces RPA, resulting in the generation of a Rad51 nucleoprotein filament that in turn catalyzes the search and invasion into the recombination partner with the help of proteins belonging to the RAD52 epistasis group to form a D loop that accompanies DNA synthesis. Thereafter, at least two competing mechanisms may come into play. One is the DSB repair pathway, in which the capture of the second DSB end and additional DNA synthesis result in an intermediate that harbors two Holliday junctions. The subsequent resolution of Holliday junctions results in the formation of crossovers. Alternatively, in the synthesis-dependent strand annealing pathway, the D loop dissociates and the invading single strand with newly synthesized DNA reanneals with the other DSB end, followed by gap-filling DNA synthesis and ligation, forming only noncrossover products (Ma, 2006; San Filippo et al., 2008).RPA is comprised of three subunits of RPA1, 2, and 3, alternatively termed as RPA70, 32, and 14, respectively, according to their apparent Mrs (Wold, 1997; Iftode et al., 1999). RPA is an essential protein in various DNA metabolism pathways such as DNA replication, repair, and HR (Wold, 1997; Iftode et al., 1999). In these pathways, the most basic function of RPA is binding to ssDNA to protect it from exonucleases, and its general roles in DNA metabolism depend on its interactions with other proteins in various pathways (Wold, 1997; Iftode et al., 1999). For example, in human NER pathway, RPA binds to damaged DNA and interacts with xeroderma pigmentosum damage-recognition protein, XPA, in the damage recognition step, and then the endonucleases XPG and ERCC1/XPF are recruited to the RPA-XPA-damaged DNA complex in the excision step (He et al., 1995). Interactions of RPA with those proteins are critical in this process (Wold, 1997; Iftode et al., 1999). A great deal of protein dynamics research has indicated that the interactions between RPA and other DNA-metabolism proteins are choreographed on the ssDNA to recruit the required protein present at the proper time (Fanning et al., 2006).Human, animals, and fungi have single copy for each subunit of RPA (http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, have multiple genes for most RPA subunits (Ishibashi et al., 2006; Shultz et al., 2007). Most of them have not unveiled exact function up to now. To elucidate the molecular basis of meiosis in rice, we performed a large-scale screen for sterile mutants using our T-DNA insertion mutant library (Wu et al., 2003). Previously, we reported the cloning of OsPAIR3, a novel gene required for homologous chromosome pairing and synapsis in rice (Yuan et al., 2009). Here we report the characterization of another sterile mutant with a T-DNA insertion in OsRPA1a. Our results indicate that OsRPA1a is essential for DNA repair but may play redundant roles in DNA replication and recombination in rice.  相似文献   

6.

Introduction

By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice.

Results

Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice.

Conclusion

Thus, exercise-induced muscle fibre switch is Nox4-independent.  相似文献   

7.
《Cell reports》2020,30(5):1373-1384.e4
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
10.
Activation-induced deaminase (AID) initiates somatic hypermutation, gene conversion and class switch recombination by deaminating variable and switch region DNA cytidines to uridines. AID is predominantly cytoplasmic and must enter the nuclear compartment to initiate these distinct antibody gene diversification reactions. Nuclear AID is relatively short-lived, as it is efficiently exported by a CRM1-dependent mechanism and it is susceptible to proteasome-dependent degradation. To help shed light on mechanisms of post-translational regulation, a yeast-based screen was performed to identify AID-interacting proteins. The calcium and integrin binding protein CIB1 was identified by sequencing and the interaction was confirmed by immunoprecipitation experiments. The AID/CIB1 resisted DNase and RNase treatment, and it is therefore unlikely to be mediated by nucleic acid. The requirement for CIB1 in AID-mediated antibody gene diversification reactions was assessed in CIB1-deficient DT40 cells and in knockout mice, but immunoglobulin gene conversion and class switch recombination appeared normal. The DT40 system was also used to show that CIB1 over-expression has no effect on gene conversion and that AID-EGFP subcellular localization is normal. These combined data demonstrate that CIB1 is not required for AID to mediate antibody gene diversification processes. It remains possible that CIB1 has an alternative, a redundant or a subtle non-limiting regulatory role in AID biology.  相似文献   

11.
《Molecular cell》2020,77(2):384-394.e4
  1. Download : Download high-res image (109KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
14.
The DNA base lesions in living cells occur permanently and with high frequency as a result of the action of exogenous and endogenous factors. The main mechanism providing removal of such lesions is base excision repair.  相似文献   

15.
Molecular Biology - The base and nucleotide excision DNA repair (BER and NER) systems are aimed at removing specific types of damaged DNA, i.e., oxidized, alkylated, or deaminated bases in the case...  相似文献   

16.
17.
18.
Mitochondrial DNA is thought to be especially prone to oxidative damage by reactive oxygen species generated through electron transport during cellular respiration. This damage is mitigated primarily by the base excision repair (BER) pathway, one of the few DNA repair pathways with confirmed activity on mitochondrial DNA. Through genetic epistasis analysis of the yeast Saccharomyces cerevisiae, we examined the genetic interaction between each of the BER proteins previously shown to localize to the mitochondria. In addition, we describe a series of genetic interactions between BER components and the MutS homolog MSH1, a respiration-essential gene. We show that, in addition to their variable effects on mitochondrial function, mutant msh1 alleles conferring partial function interact genetically at different points in mitochondrial BER. In addition to this separation of function, we also found that the role of Msh1p in BER is unlikely to be involved in the avoidance of large-scale deletions and rearrangements.DEPLETION of mitochondrial function has been implicated in the human aging process as well as in several inherited and aging-related disorders (Wallace 2005; Weissman et al. 2007). Much of this dysfunction may be attributed to mitochondrial genome instability, as the respiratory capacity of the mitochondria is dependent on an intact genome. Since respiration is essential for the survival of eukaryotic obligate aerobes, the facultative anaerobe Saccharomyces cerevisiae is an ideal model system for mitochondrial studies. Despite the difference in size between the mitochondrial genomes of yeast and humans, the encoded components are required for the same process, cellular energy production (Foury et al. 1998). Therefore, studying how S. cerevisiae maintain mitochondrial DNA (mtDNA) could lend valuable insight into mitochondrial genome maintenance in higher eukaryotes (Perocchi et al. 2008).The necessary process of electron transport during respiration can cause damage to proteins, lipids, and nucleic acids through the formation of reactive oxygen species (ROS) (Longo et al. 1996). Because mtDNA exists in this harsh environment, it is thought that it is especially prone to oxidative damage (Bohr 2002). Damaged bases can be mutagenic by misincorporation opposite the damage by the replicative polymerase or by translesion synthesis beyond the damaged base. Therefore, the repair of oxidative lesions is essential for the stability of the mitochondrial genome.An important mechanism for repair of oxidative DNA damage is the base excision repair (BER) pathway (Croteau and Bohr 1997; Nilsen and Krokan 2001; Bohr 2002). This pathway is well studied in the nucleus of many organisms, and isoforms of several key components have been shown to localize to the mitochondrial compartment (Rosenquist et al. 1997; You et al. 1999; Vongsamphanh et al. 2001). However, despite their extensive nuclear and biochemical characterization, the role of these isoforms in the repair of mtDNA is poorly understood.BER is initiated when an N-glycosylase recognizes a damaged base and cleaves the glycosidic bond between it and the sugar-phosphate backbone, creating an apurinic/apyrimidinic (AP) site that can be repaired by one of two BER pathways. In short patch BER, the AP site is processed by an AP endonuclease on the 5′ side of the damaged base and by the AP lyase activity of a glycosylase, or polymerase β, on the 3′ side of the damage, to create a single-strand gap (Wilson et al. 1998). This gap is filled by a DNA polymerase and then ligated to complete the repair. In the alternative method of long-patch BER, the DNA is again cleaved by an AP endonuclease to generate an available 3′-end for synthesis by a DNA polymerase at the nick, displacing the existing sequence containing the abasic site and creating a 5′ flap. This flap is cleaved by a flap endonuclease, and the resulting nick is sealed by DNA ligase, completing the repair. Biochemical studies suggest that both short-patch and long-patch pathways are active in mitochondria (Akbari et al. 2008; Liu et al. 2008; Szczesny et al. 2008).In this study, we examine the mitochondrial roles of Apn1p, Ntg1p, and Ogg1p, three well-studied BER components. The N-glycosylase Ogg1p is important for the repair of oxidatively damaged DNA, and studies of ogg1-Δ strains have found an increase in point mutations in both nuclear and mitochondrial DNA (Thomas et al. 1997; Singh et al. 2001). In yeast, it was previously demonstrated that a deletion of the N-glycosylase NTG1, or the AP endonuclease APN1, leads to a decrease in mitochondrial mutations as measured by rates of erythromycin resistance, suggesting that the actions of Ntg1p and Apn1p create mutagenic intermediates in mtDNA during repair (Phadnis et al. 2006). This stands in contrast to the increases seen for nuclear DNA mutation rates in the presence of these deletion alleles, indicating that it is not always possible to extrapolate the mitochondrial function of BER proteins on the basis of their nuclear functions, thus making mitochondrial-specific studies necessary (Ramotar et al. 1991, 1993; Alseth et al. 1999; Bennett 1999). In addition, there are likely to be mitochondrial-specific players in the pathway. Here we show that the mismatch repair homolog Msh1p plays multiple roles in mitochondrial BER.Msh1p is the only one of six yeast homologs of MutS, the bacterial mismatch repair protein, which has been found localized to the mitochondria (Reenan and Kolodner 1992; Chi and Kolodner 1994). Msh1p is essential for mitochondrial function and maintenance of mtDNA, necessitating the use of partial function mutants to study the role of Msh1p in mtDNA maintenance (Mookerjee et al. 2005). Although the effects of its disruption have been examined in multiple studies, the mechanism by which Msh1p acts to carry out its essential functions remains unclear (Reenan and Kolodner 1992; Koprowski et al. 2002; Mookerjee et al. 2005; Mookerjee and Sia 2006). Its role as a mitochondrial mismatch repair protein has been disputed, particularly since there are no other mismatch repair proteins that localize to the mitochondria. However, since mtDNA has such a high potential requirement for BER, it is possible that this pathway in the mitochondria may utilize Msh1p. Previous studies have shown genetic interactions between Msh1p and the BER proteins Ogg1p, Apn1p, and Ntg1p (Dzierzbicki et al. 2004; Kaniak et al. 2009). Using msh1 alleles disrupted in conserved DNA binding and ATPase domains, we have examined the frequency and spectrum of mutations responsible for the different mutation rates seen with each allele.  相似文献   

19.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 104 events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

20.
维持基因组稳定是生物生存的基础。碱基切除修复(base excision repair,BER)是修复损伤DNA、维持基因组稳定的主要方式之一。碱基切除修复对结核分枝杆菌等胞内致病菌尤其重要。fpg编码碱基切除修复的关键酶。本文通过比较分枝杆菌的基因组,发现结核菌较其他非致病分枝杆菌具有更多的碱基切除修复基因。这提示碱基切除修复可能对结核菌在宿主体内存活和致病至关重要。这条途径也许是新结核病药物研发的重要靶标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号