首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.

Background

Evidence favours insulin resistance and compensatory hyperinsulinemia as the predominant, perhaps primary, defects in polycystic ovary syndrome (PCOS). The aim of the present study was to evaluate insulin metabolism in young women with PCOS but normal glucose tolerance as compared with age, body mass index and insulin resistance-matched controls to answer the question whether women with PCOS hypersecrete insulin in comparison to appropriately insulin resistance-matched controls.

Research Design and Methods

Sixty-nine cases were divided according to their body mass index (BMI) in normal-weight (N = 29), overweight (N = 24) and obese patients (N = 16). Controls were 479 healthy women (age 16–49 y). Whole body Insulin Sensitivity (WBISI), fasting, and total insulin secretion were estimated following an oral glucose tolerance test (C-peptide deconvolution method).

Results

Across classes of BMI, PCOS patients had greater insulin resistance than matched controls (p<0.0001 for all the comparisons), but they showed higher fasting and total insulin secretion than their age, BMI and insulin resistance-matched peers (p<0.0001 for all the comparisons).

Conclusion

Women with PCOS show higher insulin resistance but also larger insulin secretion to maintain normal glucose homeostasis than age-, BMI- and insulin resistance-matched controls.  相似文献   

2.

Aims/Hypothesis

To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.

Methods

Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6) and rat (INS-1E) beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1). Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS). Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.

Results

24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05). Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05) and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein). Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05) and reactive oxygen species increased by more than twofold (P<0.05) following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.

Conclusions/Interpretation

Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.  相似文献   

3.

Objective

Polypyrimidine tract-binding protein 1 (PTBP1) promotes stability and translation of mRNAs coding for insulin secretion granule proteins and thereby plays a role in β-cells function. We studied whether common genetic variations within the PTBP1 locus influence insulin secretion, and/or proinsulin conversion.

Methods

We genotyped 1,502 healthy German subjects for four tagging single nucleotide polymorphisms (SNPs) within the PTBP1 locus (rs351974, rs11085226, rs736926, and rs123698) covering 100% of genetic variation with an r2≥0.8. The subjects were metabolically characterized by an oral glucose tolerance test with insulin, proinsulin, and C-peptide measurements. A subgroup of 320 subjects also underwent an IVGTT.

Results

PTBP1 SNP rs11085226 was nominally associated with lower insulinogenic index and lower cleared insulin response in the OGTT (p≤0.04). The other tested SNPs did not show any association with the analyzed OGTT-derived secretion parameters. In the IVGTT subgroup, SNP rs11085226 was accordingly associated with lower insulin levels within the first ten minutes following glucose injection (p = 0.0103). Furthermore, SNP rs351974 was associated with insulin levels in the IVGTT (p = 0.0108). Upon interrogation of MAGIC HOMA-B data, our rs11085226 result was replicated (MAGIC p = 0.018), but the rs351974 was not.

Conclusions

We conclude that common genetic variation in PTBP1 influences glucose-stimulated insulin secretion. This underlines the importance of PTBP1 for beta cell function in vivo.  相似文献   

4.

Background

Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance.

Methodology/Principal Findings

We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion.

Conclusions/Significance

In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.  相似文献   

5.
6.

Introduction

Mitochondrial dysfunction, lipid accumulation, insulin resistance and metabolic inflexibility have been implicated in the etiology of type 2 diabetes (T2D), yet their interrelationship remains speculative. We investigated these interrelationships in a group of T2D and obese normoglycemic control subjects.

Methods

49 non-insulin dependent male T2D patients and 54 male control subjects were enrolled, and a hyperinsulinemic-euglycemic clamp and indirect calorimetry were performed. A muscle biopsy was taken and intramyocellular lipid (IMCL) was measured. In vivo mitochondrial function was measured by PCr recovery in 30 T2D patients and 31 control subjects.

Results

Fasting NEFA levels were significantly elevated in T2D patients compared with controls, but IMCL was not different. Mitochondrial function in T2D patients was compromised by 12.5% (p<0.01). Whole body glucose disposal (WGD) was higher at baseline and lower after insulin stimulation. Metabolic flexibility (ΔRER) was lower in the type 2 diabetic patients (0.050±0.033 vs. 0.093±0.050, p<0.01). Mitochondrial function was the sole predictor of basal respiratory exchange ratio (RER) (R2 = 0.18, p<0.05); whereas WGD predicted both insulin-stimulated RER (R2 = 0.29, p<0.001) and metabolic flexibility (R2 = 0.40, p<0.001).

Conclusions

These results indicate that defects in skeletal muscle in vivo mitochondrial function in type 2 diabetic patients are only reflected in basal substrate oxidation and highlight the importance of glucose disposal rate as a determinant of substrate utilization in response to insulin.  相似文献   

7.

Background

Ketosis-prone diabetes (KPDM) is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear.

Methods

Twenty KPDM patients and twelve type 1 diabetic patients (T1DM), evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT) for 2 h.

Results

At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001) with no differences in non-esterified fatty acids (NEFA) while Acylation Stimulating Protein (ASP) tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins), while 9 were maintained (KPDM+ins). NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006), 12 months (p<0.0001) and 24 months (p<0.0001) during MMTT. NEFA in KPDM-ins decreased over 30–120 minutes (p<0.05), but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081) and 24 months (p = 0.0019), while ASP was lower at baseline (p = 0.0024) and 12 months (p = 0.0281), with a decrease in ASP/C3 ratio.

Conclusions

Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.  相似文献   

8.
9.

Background

Insulin resistance and type 2 diabetes are more prevalent in people of South Asian ethnicity than in people of Western European origin. To investigate the source of these differences, we compared insulin sensitivity, insulin secretion, glucose and lipid metabolism in South Asian and Nordic subjects with type 2 diabetes.

Methods

Forty-three Nordic and 19 South Asian subjects with type 2 diabetes were examined with intra-venous glucose tolerance test, euglycemic clamp including measurement of endogenous glucose production, indirect calorimetry measuring glucose and lipid oxidation, and dual x-ray absorptiometry measuring body composition.

Results

Despite younger mean ± SD age (49.7±9.4 vs 58.3±8.3 years, p = 0.001), subjects of South Asian ethnicity had the same diabetes duration (9.3±5.5 vs 9.6±7.0 years, p = 0.86), significantly higher median [inter-quartile range] HbA1c (8.5 [1.6] vs 7.3 [1.6] %, p = 0.024) and lower BMI (28.7±4.0 vs 33.2±4.7 kg/m2, p<0.001). The South Asian group exhibited significantly higher basal endogenous glucose production (19.1 [9.1] vs 14.4 [6.8] µmol/kgFFM⋅min, p = 0.003). There were no significant differences between the groups in total glucose disposal (39.1±20.4 vs 39.2±17.6 µmol/kgFFM⋅min, p = 0.99) or first phase insulin secretion (AUC0–8 min: 220 [302] vs 124 [275] pM, p = 0.35). In South Asian subjects there was a tendency towards positive correlations between endogenous glucose production and resting and clamp energy expenditure.

Conclusions

Subjects of South Asian ethnicity with type 2 diabetes, despite being younger and leaner, had higher basal endogenous glucose production, indicating higher hepatic insulin resistance, and a trend towards higher use of carbohydrates as fasting energy substrate compared to Nordic subjects. These findings may contribute to the understanding of the observed differences in prevalence of type 2 diabetes between the ethnic groups.  相似文献   

10.

Background

Impaired mitochondrial function and ectopic lipid deposition in skeletal muscle and liver have been linked to decreased insulin sensitivity. As growth hormone (GH) excess can reduce insulin sensitivity, we examined the impact of previous acromegaly (AM) on glucose metabolism, lipid storage and muscular ATP turnover.

Participants and Methods

Seven AM (4f/3 m, age: 46±4 years, BMI: 28±1 kg/m2) and healthy volunteers (CON: 3f/4 m, 43±4 years, 26±2 kg/m2) matched for age and body mass underwent oral glucose testing for assessment of insulin sensitivity (OGIS) and ß-cell function (adaptation index, ADAP). Whole body oxidative capacity was measured with indirect calorimetry and spiroergometry. Unidirectional ATP synthetic flux (fATP) was assessed from 31P magnetic resonance spectroscopy (MRS) of calf muscle. Lipid contents of tibialis anterior (IMCLt) and soleus muscles (IMCLs) and liver (HCL) were measured with 1H MRS.

Results

Despite comparable GH, insulin-like growth factor-1 (IGF-I) and insulin sensitivity, AM had ∼85% lower ADAP (p<0.01) and ∼21% reduced VO2max (p<0.05). fATP was similarly ∼25% lower in AM (p<0.05) and related positively to ADAP (r = 0.744, p<0.01), but negatively to BMI (r = −0.582, p<0.05). AM had ∼3fold higher HCL (p<0.05) while IMCLt and IMCLs did not differ between the groups.

Conclusions

Humans with a history of acromegaly exhibit reduced insulin secretion, muscular ATP synthesis and oxidative capacity but elevated liver fat content. This suggests that alterations in ß-cell function and myocellular ATP production may persist despite normalization of GH secretion after successful treatment of acromegaly.  相似文献   

11.

Aims

Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques.

Methods

Islets isolated from C57BL/6-Tg (CAG-EGFP) mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9) and tacrolimus-treated group (n = 7). The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system.

Results

The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05). Although the expression of Vegfa (p<0.05) and Ccnd1 (p<0.05) was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression.

Conclusions

The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.  相似文献   

12.

Background

IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth.

Methods

Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg-1, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12–14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16.

Principal Findings

IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM.

Conclusions

Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.  相似文献   

13.
14.

Background

Secreted Protein Acidic and Rich in Cysteine (SPARC) is expressed during tissue repair and regulates cellular proliferation, migration and cytokine expression. The aim was to determine if SPARC modifies intestinal inflammation.

Methods

Wild-type (WT) and SPARC-null (KO) mice received 3% dextran sodium sulphate (DSS) for 7 days. Inflammation was assessed endoscopically, clinically and histologically. IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-12/IL23p40, TNF-α, IFN-γ, RANTES, MCP-1, MIP-1α, MIP-1β, MIG and TGF-β1 levels were measured by ELISA and cytometric bead array. Inflammatory cells were characterised by CD68, Ly6G, F4/80 and CD11b immunofluorescence staining and regulatory T cells from spleen and mesenteric lymph nodes were assessed by flow cytometry.

Results

KO mice had less weight loss and diarrhoea with less endoscopic and histological inflammation than WT animals. By day 35, all (n = 13) KO animals completely resolved the inflammation compared to 7 of 14 WT mice (p<0.01). Compared to WTs, KO animals at day 7 had less IL1β (p = 0.025) and MIG (p = 0.031) with higher TGFβ1 (p = 0.017) expression and a greater percentage of FoxP3+ regulatory T cells in the spleen and draining lymph nodes of KO animals (p<0.01). KO mice also had fewer CD68+ and F4/80+ macrophages, Ly6G+ neutrophils and CD11b+ cells infiltrating the inflamed colon.

Conclusions

Compared to WT, SPARC KO mice had less inflammation with fewer inflammatory cells and more regulatory T cells. Together, with increased TGF-β1 levels, this could aid in the more rapid resolution of inflammation and restoration of the intestinal mucosa suggesting that the presence of SPARC increases intestinal inflammation.  相似文献   

15.
16.

Background

Although currently available IGRA have been reported to be promising markers for TB infection, they cannot distinguish active tuberculosis (TB) from latent infection (LTBI).

Objective

Children with LTBI, active TB disease or uninfected were prospectively evaluated by an in-house ELISPOT assay in order to investigate possible immunological markers for a differential diagnosis between LTBI and active TB.

Methods

Children at risk for TB infection prospectively enrolled in our infectious disease unit were evaluated by in-house IFN-γ and IL-2 based ELISPOT assays using a panel of Mycobacterium tuberculosis antigens.

Results

Twenty-nine children were classified as uninfected, 21 as LTBI and 25 as active TB cases (including 5 definite and 20 probable cases). Significantly higher IFN-γ ELISPOT responses were observed in infected vs. uninfected children for ESAT-6 (p<0.0001), CFP-10 (p<0.0001), TB 10.3 (p = 0.003), and AlaDH (p = 0.001), while differences were not significant considering Ag85B (p = 0.063), PstS1 (p = 0.512), and HspX (16 kDa) (p = 0.139). IL-2 ELISPOT assay responses were different for ESAT-6 (p<0.0001), CFP-10 (p<0.0001), TB 10.3 (p<0.0001), HspX (16 kDa) (p<0.0001), PstS1 (p<0.0001) and AlaDH (p = 0.001); but not for Ag85B (p = 0.063). Comparing results between children with LTBI and those with TB disease differences were significant for IFN-γ ELISPOT only for AlaDH antigen (p = 0.021) and for IL-2 ELISPOT assay for AlaDH (p<0.0001) and TB 10.3 antigen (p = 0.043). ROC analyses demonstrated sensitivity of 100% and specificity of 81% of AlaDH-IL-2 ELISPOT assay in discriminating between latent and active TB using a cut off of 12.5 SCF per million PBMCs.

Conclusion

Our data suggest that IL-2 based ELISPOT with AlaDH antigen may be of help in discriminating children with active from those with latent TB.  相似文献   

17.

Aim

To determine if there is a difference in serum zinc concentration between normoglycaemic, pre-diabetic and type-2 diabetic groups and if this is associated with pancreatic beta cell function and insulin sensitivity in the former 2 groups.

Method

Cross sectional study of a random sample of older community-dwelling men and women in Newcastle, New South Wales, Australia. Beta cell function, insulin sensitivity and insulin resistance were calculated for normoglycaemic and prediabetes participants using the Homeostasis Model Assessment (HOMA-2) calculator.

Result

A total of 452 participants were recruited for this study. Approximately 33% (N = 149) had diabetes, 33% (N = 151) had prediabetes and 34% (N = 152) were normoglycaemic. Homeostasis Model Assessment (HOMA) parameters were found to be significantly different between normoglycaemic and prediabetes groups (p<0.001). In adjusted linear regression, higher serum zinc concentration was associated with increased insulin sensitivity (p = 0.01) in the prediabetic group. There was also a significant association between smoking and worse insulin sensitivity.

Conclusion

Higher serum zinc concentration is associated with increased insulin sensitivity. Longitudinal studies are required to determine if low serum zinc concentration plays a role in progression from pre-diabetes to diabetes.  相似文献   

18.

Objectives

Urokinase-type plasminogen activator receptor is a multifunctional glycoprotein, the expression of which is increased during inflammation. It is known to bind to β3-integrins, which are elementary for the cellular entry of hantaviruses. Plasma soluble form of the receptor (suPAR) levels were evaluated as a predictor of severe Puumala hantavirus (PUUV) infection and as a possible factor involved in the pathogenesis of the disease.

Design

A single-centre prospective cohort study.

Subjects and Methods

Plasma suPAR levels were measured twice during the acute phase and once during the convalescence in 97 patients with serologically confirmed acute PUUV infection using a commercial enzyme-linked immunosorbent assay (ELISA).

Results

The plasma suPAR levels were significantly higher during the acute phase compared to the control values after the hospitalization (median 8.7 ng/ml, range 4.0–18.2 ng/ml vs. median 4.7 ng/ml, range 2.4–12.2 ng/ml, P<0.001). The maximum suPAR levels correlated with several variables reflecting the severity of the disease. There was a positive correlation with maximum leukocyte count (r = 0.475, p<0.001), maximum plasma creatinine concentration (r = 0.378, p<0.001), change in weight during the hospitalization (r = 0.406, p<0.001) and the length of hospitalization (r = 0.325, p = 0.001), and an inverse correlation with minimum platelet count (r = −0.325, p = 0.001) and minimum hematocrit (r = −0.369, p<0.001).

Conclusion

Plasma suPAR values are markedly increased during acute PUUV infection and associate with the severity of the disease. The overexpression of suPAR possibly activates β3-integrin in PUUV infection, and thus might be involved in the pathogenesis of the disease.  相似文献   

19.
Li Y  Maedler K  Shu L  Haataja L 《PloS one》2008,3(1):e1397

Background

Increased uncoupling protein-2 (UCP-2) expression has been associated with impaired insulin secretion, whereas UCP-3 protein levels are decreased in the skeleton muscle of type-2 diabetic subjects. In the present studies we hypothesize an opposing effect of glucose on the regulation of UCP-2 and UCP-3 in pancreatic islets.

Methodology

Dominant negative UCP-2 and wild type UCP-3 adenoviruses were generated, and insulin release by transduced human islets was measured. UCP-2 and UCP-3 mRNA levels were determined using quantitative PCR. UCP-2 and UCP-3 protein expression was investigated in human islets cultured in the presence of different glucose concentrations. Human pancreatic sections were analyzed for subcellular localization of UCP-3 using immunohistochemistry.

Principal Findings

Dominant negative UCP-2 expression in human islets increased insulin secretion compared to control islets (p<0.05). UCP-3 mRNA is expressed in human islets, but the relative abundance of UCP-2 mRNA was 8.1-fold higher (p<0.05). Immunohistochemical analysis confirmed co-localization of UCP-3 protein with mitochondria in human beta-cells. UCP-2 protein expression in human islets was increased ∼2-fold after high glucose exposure, whereas UCP-3 protein expression was decreased by ∼40% (p<0.05). UCP-3 overexpression improved glucose-stimulated insulin secretion.

Conclusions

UCP-2 and UCP-3 may have distinct roles in regulating beta-cell function. Increased expression of UCP-2 and decreased expression of UCP-3 in humans with chronic hyperglycemia may contribute to impaired glucose-stimulated insulin secretion. These data imply that mechanisms that suppress UCP-2 or mechanisms that increase UCP-3 expression and/or function are potential therapeutic targets to offset defects of insulin secretion in humans with type-2 diabetes.  相似文献   

20.

Background

Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals.

Objective

To characterize neurocognitive functions and assess its reversibility.

Design

Prospective cohort study.

Setting

Tertiary Referral Research Clinical Center.

Patients

A cohort of 121 short-sleeping (<6.5 h/night) obese (BMI 30–55 kg/m2) men and pre-menopausal women.

Intervention

Sleep extension (468±88 days) with life-style modifications.

Measurements

Neurocognitive functions, sleep quality and sleep duration.

Results

At baseline, 44% of the individuals had an impaired global deficit score (t-score 0–39). Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02), and lower urinary dopamine levels (p = 0.001). Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74), subjective sleep quality improved by 24% (p<0.001), self-reported sleep duration increased by 11% by questionnaires (p<0.001) and by 4% by diaries (p = 0.04), and daytime sleepiness tended to improve (p = 0.10). Global cognitive function and attention improved by 7% and 10%, respectively (both p = 0.001), and memory and executive functions tended to improve (p = 0.07 and p = 0.06). Serum cortisol increased by 17% (p = 0.02). In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function.

Limitations

Drop-out rate.

Conclusions

Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population.

Trail registration

www.ClinicalTrials.gov NCT00261898. NIDDK protocol 06-DK-0036  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号