首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Koo Y  Jung DK  Bae E 《PloS one》2012,7(3):e33401
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute a microbial immune system against invading genetic elements, such as plasmids and phages. Csn2 is an Nmeni subtype-specific Cas protein, and was suggested to function in the adaptation process, during which parts of foreign nucleic acids are integrated into the host microbial genome to enable immunity against future invasion. Here, we report a 2.2 Å crystal structure of Streptococcus pyogenes Csn2. The structure revealed previously unseen calcium-dependent conformational changes in its tertiary and quaternary structure. This supports the proposed double-stranded DNA-binding function of S. pyogenes Csn2.  相似文献   

2.
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca2+ was located at strategic positions in the oligomerization interface. We further showed that removal of Ca2+ ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca2+ ions.  相似文献   

3.
The prokaryotic immune system, CRISPR, confers an adaptive and inheritable defense mechanism against invasion by mobile genetic elements. Guided by small CRISPR RNAs (crRNAs), a diverse family of CRISPR-associated (Cas) proteins mediates the targeting and inactivation of foreign DNA. Here, we demonstrate that Csn2, a Cas protein likely involved in spacer integration, forms a tetramer in solution and structurally possesses a ring-like structure. Furthermore, co-purified Ca(2+) was found important for the DNA binding property of Csn2, which contains a helicase fold, with highly conserved DxD and RR motifs found throughout Csn2 proteins. We could verify that Csn2 binds ds-DNA. In addition molecular dynamics simulations suggested a Csn2 conformation that can "sit" on the DNA helix and binds DNA in a groove on the outside of the ring.  相似文献   

4.
Dong Han 《FEBS letters》2009,583(12):1928-21656
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are ubiquitous in archaea and eubacteria. It has been suggested that CRISPR and CAS proteins act as an immune system preventing the invasion of foreign genomic elements at the DNA level. The protein SSO1450 from Sulfolobus solfataricus (Sso) P2 belongs to the CAS1 cluster which is one of the core protein clusters most frequently associated with CRISPR sequences. In this study we show that SSO1450 is a high-affinity nucleic acid binding protein. It binds DNA, RNA and DNA-RNA hybrid apparently sequence non-specific in a multi-site binding mode. Furthermore, SSO1450 promotes the hybridization of complementary nucleic acid strands.  相似文献   

5.
Many prokaryotic organisms acquire immunity against foreign genetic material by incorporating a short segment of foreign DNA called spacer into chromosomal loci, termed clustered regularly interspaced short palindromic repeats (CRISPRs). The encoded RNAs are processed into small fragments that guide the silencing of the invading genetic elements. The CRISPR‐associated (Cas) proteins are the main executioners of these processes. Herein, we report the crystal structure of Stu0660 of Streptococcus thermophilus, a Cas protein involved in the acquisition of new spacers. By homotetramerization, Stu0660 forms a central channel which is decorated with basic amino acids and binds linear double‐stranded DNA (dsDNA), but not circular dsDNA. Despite undetectably low sequence similarity, two N‐terminal domains of Stu0660 are similar to the entire structure of an Enterococcus faecalis Csn2 protein, which also forms a homotetramer and binds dsDNA. Thus, this work identifies a previously unknown group of Stu0660‐like Csn2 proteins (~350 residues), which are larger than the known canonical Csn2 proteins (~220 residues) by containing an extra C‐terminal domain. The commonly present central channel in the two subgroups appears as a design to selectively interact with linear dsDNA. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The prokaryotic immune system CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated genes) adapts to foreign invaders by acquiring their short deoxyribonucleic acid (DNA) fragments as spacers, which guide subsequent interference to foreign nucleic acids based on sequence matching. The adaptation mechanism avoiding acquiring ‘self’ DNA fragments is poorly understood. In Haloarcula hispanica, we previously showed that CRISPR adaptation requires being primed by a pre-existing spacer partially matching the invader DNA. Here, we further demonstrate that flanking a fully-matched target sequence, a functional PAM (protospacer adjacent motif) is still required to prime adaptation. Interestingly, interference utilizes only four PAM sequences, whereas adaptation-priming tolerates as many as 23 PAM sequences. This relaxed PAM selectivity explains how adaptation-priming maximizes its tolerance of PAM mutations (that escape interference) while avoiding mis-targeting the spacer DNA within CRISPR locus. We propose that the primed adaptation, which hitches and cooperates with the interference pathway, distinguishes target from non-target by CRISPR ribonucleic acid guidance and PAM recognition.  相似文献   

7.
Many archaea and bacteria have an adaptive immune system known as CRISPR which allows them to recognize and destroy foreign nucleic acid that they have previously encountered. Two CRISPR-associated proteins, Cas1 and Cas2, are required for the acquisition step of adaptation, in which fragments of foreign DNA are incorporated into the host CRISPR locus. Cas1 genes have also been found scattered in several archaeal and bacterial genomes, unassociated with CRISPR loci or other cas proteins. Rather, they are flanked by nearly identical inverted repeats and enclosed within direct repeats, suggesting that these genetic regions might be mobile elements (‘casposons’). To investigate this possibility, we have characterized the in vitro activities of the putative Cas1 transposase (‘casposase’) from Aciduliprofundum boonei. The purified Cas1 casposase can integrate both short oligonucleotides with inverted repeat sequences and a 2.8 kb excised mini-casposon into target DNA. Casposon integration occurs without target specificity and generates 14–15 basepair target site duplications, consistent with those found in casposon host genomes. Thus, Cas1 casposases carry out similar biochemical reactions as the CRISPR Cas1-Cas2 complex but with opposite substrate specificities: casposases integrate specific sequences into random target sites, whereas CRISPR Cas1-Cas2 integrates essentially random sequences into a specific site in the CRISPR locus.  相似文献   

8.
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.  相似文献   

9.
The adaptation against foreign nucleic acids by the CRISPR–Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) depends on the insertion of foreign nucleic acid-derived sequences into the CRISPR array as novel spacers by still unknown mechanism. We identified and characterized in Escherichia coli intermediate states of spacer integration and mapped the integration site at the chromosomal CRISPR array in vivo. The results show that the insertion of new spacers occurs by site-specific nicking at both strands of the leader proximal repeat in a staggered way and is accompanied by joining of the resulting 5′-ends of the repeat strands with the 3′-ends of the incoming spacer. This concerted cleavage-ligation reaction depends on the metal-binding center of Cas1 protein and requires the presence of Cas2. By acquisition assays using plasmid-located CRISPR array with mutated repeat sequences, we demonstrate that the primary sequence of the first repeat is crucial for cleavage of the CRISPR array and the ligation of new spacer DNA.  相似文献   

10.
11.
CRISPR‐Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR‐Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I‐E CRISPR4‐Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR‐Cas systems are required for spacer acquisition. The St4 CRISPR‐Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2‐DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3′‐overhangs (protospacers) in vitro. We further show that the DnaQ domain of Cas2 functions as a 3′–5′‐exonuclease that processes 3′‐overhangs of the protospacer to promote integration.  相似文献   

12.
CRISPR-Cas9 is an RNA-guided DNA endonuclease involved in bacterial adaptive immunity and widely repurposed for genome editing in human cells, animals and plants. In bacteria, RNA molecules that guide Cas9′s activity derive from foreign DNA fragments that are captured and integrated into the host CRISPR genomic locus by the Cas1-Cas2 CRISPR integrase. How cells generate the specific lengths of DNA required for integrase capture is a central unanswered question of type II-A CRISPR-based adaptive immunity. Here, we show that an integrase supercomplex comprising guide RNA and the proteins Cas1, Cas2, Csn2 and Cas9 generates precisely trimmed 30-base pair DNA molecules required for genome integration. The HNH active site of Cas9 catalyzes exonucleolytic DNA trimming by a mechanism that is independent of the guide RNA sequence. These results show that Cas9 possesses a distinct catalytic capacity for generating immunological memory in prokaryotes.  相似文献   

13.
14.
Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.  相似文献   

15.
16.
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system mediates adaptive immunity against foreign nucleic acids in prokaryotes. However, efficient adaptation of a native CRISPR to purified viruses has only been observed for the type II-A system from a Streptococcus thermophilus industry strain, and rarely reported for laboratory strains. Here, we provide a second native system showing efficient adaptation. Infected by a newly isolated virus HHPV-2, Haloarcula hispanica type I-B CRISPR system acquired spacers discriminatively from viral sequences. Unexpectedly, in addition to Cas1, Cas2 and Cas4, this process also requires Cas3 and at least partial Cascade proteins, which are involved in interference and/or CRISPR RNA maturation. Intriguingly, a preexisting spacer partially matching a viral sequence is also required, and spacer acquisition from upstream and downstream sequences of its target sequence (i.e. priming protospacer) shows different strand bias. These evidences strongly indicate that adaptation in this system strictly requires a priming process. This requirement, if validated also true for other CRISPR systems as implied by our bioinformatic analysis, may help to explain failures to observe efficient adaptation to purified viruses in many laboratory strains, and the discrimination mechanism at the adaptation level that has confused scientists for years.  相似文献   

17.
周桓  邵艳娜  王涓  吴清平  丁郁 《微生物学报》2021,61(12):3856-3869
由成簇、规则间隔的短回文重复序列(Clustered regularly interspaced short palindromic repeats,CRISPR)和CRISPR相关蛋白(CRISPR-associated protein,Cas)组成的CRISPR/Cas系统是广泛存在于多数细菌和古细菌中的一种适应性免疫系统。CRISPR/Cas系统可识别并结合外源入侵的核酸分子,之后Cas蛋白的切割活性被激活,能够对入侵的核酸分子进行切割使其降解。利用CRISPR/Cas系统特异的序列识别及切割活性,将其应用于核酸检测中,为提高检测灵敏度及特异性等性能指标提供了一种新思路。本文介绍了CRISPR/Cas系统的发展、作用机制等,对多样化的Cas蛋白在核酸检测中的代表性应用研究进行总结,进一步讨论了CRISPR/Cas技术应用于核酸检测中存在的优缺点,并对未来研究进行了展望,为基于CRISPR/Cas技术的核酸检测方法在病原微生物的检测中提供参考和依据。  相似文献   

18.
19.
20.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) offer an adaptive immune system that protects bacteria and archaea from nucleic acid invaders through an RNA-mediated nucleic acid cleavage mechanism. Our knowledge of nucleic acid cleavage mechanisms is limited to three examples of widely different ribonucleoprotein particles that target either DNA or RNA. Staphylococcus epidermidis belongs to the Type III-A CRISPR system and has been shown to interfere with invading DNA in vivo. The Type III-A CRISPR system is characterized by the presence of Csm1, a member of Cas10 family of proteins, that has a permuted histidine–aspartate domain and a nucleotidyl cyclase-like domain, both of which contain sequence features characteristic of nucleases. In this work, we show in vitro that a recombinant S. epidermidis Csm1 cleaves single-stranded DNA and RNA exonucleolytically in the 3′–5′ direction. We further showed that both cleavage activities are divalent-metal-dependent and reside in the GGDD motif of the cyclase-like domain. Our data suggest that Csm1 may work in the context of an effector complex to degrade invading DNA and participate in CRISPR RNA maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号