首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets.  相似文献   

4.
5.
Plant small RNAs are 3′ methylated by the methyltransferase HUA1 ENHANCER1 (HEN1). In plant hen1 mutants, 3′ modifications of small RNAs, including oligo-uridylation (tailing), are associated with accelerated degradation of microRNAs (miRNAs). By sequencing small RNAs of the wild type and hen1 mutants from Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays), we found 3′ truncation prior to tailing is widespread in these mutants. Moreover, the patterns of miRNA truncation and tailing differ substantially among miRNA families but are conserved across species. The same patterns are also observable in wild-type libraries from a broad range of species, only at lower abundances. ARGONAUTE (AGO1), even with defective slicer activity, can bind these truncated and tailed variants of miRNAs. An ago1 mutation in hen1 suppressed such 3′ modifications, indicating that they occur while miRNAs are in association with AGO1, either during or after RNA-induced silencing complex assembly. Our results showed AGO1-bound miRNAs are actively 3′ truncated and tailed, possibly reflecting the activity of cofactors acting in conserved patterns in miRNA degradation.  相似文献   

6.
MicroRNAs (miRNAs) guide RNA-induced silencing complexes to target RNAs based on miRNA-target complementarity. Using a dual-luciferase based sensor system in Nicotiana benthamiana, we quantitatively assessed the relationship between miRNA-target complementarity and silencing efficacy measured at both the RNA and protein levels, using several conserved miRNAs and their known target sites from Arabidopsis thaliana. We found that naturally occurring sites have variable efficacies attributable to their complementarity patterns. We also observed that sites with a few mismatches to the miRNA 3′ regions, which are common in plants, are often equally effective and sometimes more effective than perfectly matched sites. By contrast, mismatches to the miRNA 5′ regions strongly reduce or eliminate repression efficacy but are nonetheless present in several natural sites, suggesting that in some cases, suboptimal miRNA efficacies are either tolerated or perhaps selected for. Central mismatches fully abolished repression efficacy in our system, but such sites then became effective miRNA target mimics. Complementarity patterns that are functional in animals (seed sites, 3′-supplementary sites, and centered sites) did not reliably confer repression, regardless of context (3′-untranslated region or open reading frame) or measurement type (RNA or protein levels). Overall, these data provide a robust and empirical foundation for understanding, predicting, and designing functional miRNA target sites in plants.  相似文献   

7.
8.
9.
Plant architecture is determined by meristems that initiate leaves during vegetative development and flowers during reproductive development. Maize (Zea mays) inflorescences are patterned by a series of branching events, culminating in floral meristems that produce sexual organs. The maize fuzzy tassel (fzt) mutant has striking inflorescence defects with indeterminate meristems, fasciation, and alterations in sex determination. fzt plants have dramatically reduced plant height and shorter, narrower leaves with leaf polarity and phase change defects. We positionally cloned fzt and discovered that it contains a mutation in a dicer-like1 homolog, a key enzyme required for microRNA (miRNA) biogenesis. miRNAs are small noncoding RNAs that reduce target mRNA levels and are key regulators of plant development and physiology. Small RNA sequencing analysis showed that most miRNAs are moderately reduced in fzt plants and a few miRNAs are dramatically reduced. Some aspects of the fzt phenotype can be explained by reduced levels of known miRNAs, including miRNAs that influence meristem determinacy, phase change, and leaf polarity. miRNAs responsible for other aspects of the fzt phenotype are unknown and likely to be those miRNAs most severely reduced in fzt mutants. The fzt mutation provides a tool to link specific miRNAs and targets to discrete phenotypes and developmental roles.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号