首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The epidermal growth factor (EGF) activates the phosphatidylinositol 3-kinase (PI3K)-Akt cascade among other signaling pathways. This route is involved in cell proliferation and survival, therefore, its dysregulation can promote cancer. Considering the relevance of the PI3K-Akt signaling in cell survival and in the pathogenesis of cancer, and that GH was reported to modulate EGFR expression and signaling, the objective of this study was to analyze the effects of increased GH levels on EGF-induced PI3K-Akt signaling.EGF-induced signaling was evaluated in the liver of GH-overexpressing transgenic mice and in their normal siblings. While Akt expression was increased in GH-overexpressing mice, EGF-induced phosphorylation of Akt, relative to its protein content, was diminished at Ser473 and inhibited at Thr308; consequently, mTOR, which is a substrate of Akt, was not activated by EGF. However, the activation of PDK1, a kinase involved in Akt phosphorylation at Thr308, was not reduced in transgenic mice. Kinetics studies of EGF-induced Akt phosphorylation showed that it is rapidly and transiently induced in GH-overexpressing mice compared with normal siblings. Thus, the expression and activity of phosphatases involved in the termination of the PI3K-Akt signaling were studied. In transgenic mice, neither PTEN nor PP2A were hyperactivated; however, EGF induced the rapid and transient association of SHP-2 to Gab1, which mediates association to EGFR and activation of PI3K. Rapid recruitment of SHP2, which would accelerate the termination of the proliferative signal induced, could be therefore contributing to the diminished EGF-induced activity of Akt in GH-overexpressing mice.  相似文献   

2.
3.
4.
Cellular senescence-associated changes in blood vessels have been implicated in aging and age-related cardiovascular disorders. Here, we demonstrate that peroxisome proliferator-activated receptor (PPAR) δ coordinates angiotensin (Ang) II-induced senescence of human vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated Ang II-induced generation of superoxides and suppressed senescence of VSMCs. A marked increase in the levels of p53 and p21 induced by Ang II was blunted by the treatment with GW501516. Ligand-activated PPARδ up-regulated expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and suppressed the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Knockdown of PTEN with siRNA abrogated the effects of PPARδ on cellular senescence, on PI3K/Akt signaling, and on generation of ROS in VSMCs treated with Ang II. Finally, administration of GW501516 to apoE-deficient mice treated with Ang II significantly reduced the number of senescent cells in the aorta, where up-regulation of PTEN with reduced levels of phosphorylated Akt and ROS was demonstrated. Thus, ligand-activated PPARδ confers resistance to Ang II-induced senescence by up-regulation of PTEN and ensuing modulation of the PI3K/Akt signaling to reduce ROS generation in vascular cells.  相似文献   

5.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway has inherent oncogenic potential. It is up-regulated in diverse human cancers by either a gain of function in PI3K itself or in its downstream target Akt or by a loss of function in the negative regulator PTEN. However, the complete consequences of this up-regulation are not known. Here we show that insulin and epidermal growth factor or an inactivating mutation in the tumor suppressor PTEN specifically increase the protein levels of hypoxia-inducible factor (HIF) 1alpha but not of HIF-1beta in human cancer cell lines. This specific elevation of HIF-1alpha protein expression requires PI3K signaling. In the prostate carcinoma-derived cell lines PC-3 and DU145, insulin- and epidermal growth factor-induced expression of HIF-1alpha was inhibited by the PI3K-specific inhibitors LY294002 and wortmannin in a dose-dependent manner. HIF-1beta expression was not affected by these inhibitors. Introduction of wild-type PTEN into the PTEN-negative PC-3 cell line specifically inhibited the expression of HIF-1alpha but not that of HIF-1beta. In contrast to the HIF-1alpha protein, the level of HIF-1alpha mRNA was not significantly affected by PI3K signaling. Vascular endothelial growth factor reporter gene activity was induced by insulin in PC-3 cells and was inhibited by the PI3K inhibitor LY294002 and by the coexpression of a HIF-1 dominant negative construct. Vascular endothelial growth factor reporter gene activity was also inhibited by expression of a dominant negative PI3K construct and by the tumor suppressor PTEN.  相似文献   

6.
7.
PI3K/Akt signaling plays an important role in the regulation of cardiomyocyte death machinery, which can cause stress-induced cardiac dysfunction. Here, we report that apoptosis regulator through modulating IAP expression (ARIA), a recently identified transmembrane protein, regulates the cardiac PI3K/Akt signaling and thus modifies the progression of doxorubicin (DOX)-induced cardiomyopathy. ARIA is highly expressed in the mouse heart relative to other tissues, and it is also expressed in isolated rat cardiomyocytes. The stable expression of ARIA in H9c2 cardiac muscle cells increased the levels of membrane-associated PTEN and subsequently reduced the PI3K/Akt signaling and the downstream phosphorylation of Bad, a proapoptotic BH3-only protein. When challenged with DOX, ARIA-expressing H9c2 cells exhibited enhanced apoptosis, which was reversed by the siRNA-mediated silencing of Bad. ARIA-deficient mice exhibited normal heart morphology and function. However, DOX-induced cardiac dysfunction was significantly ameliorated in conjunction with reduced cardiomyocyte death and cardiac fibrosis in ARIA-deficient mice. Phosphorylation of Akt and Bad was substantially enhanced in the heart of ARIA-deficient mice even after treatment with DOX. Moreover, repressing the PI3K by cardiomyocyte-specific expression of dominant-negative PI3K (p110α) abolished the cardioprotective effects of ARIA deletion. Notably, targeted activation of ARIA in cardiomyocytes but not in endothelial cells reduced the cardiac PI3K/Akt signaling and exacerbated the DOX-induced cardiac dysfunction. These studies, therefore, revealed a previously undescribed mode of manipulating cardiac PI3K/Akt signaling by ARIA, thus identifying ARIA as an attractive new target for the prevention of stress-induced myocardial dysfunction.  相似文献   

8.
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip−1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip−1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.  相似文献   

9.
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites produced by cytochrome P450 epoxygenases which are highly expressed in hepatocytes. The functions of EETs in hepatocytes are not well understood. In this study, we investigated the effects of 14,15-EETs treatment on the insulin signal transduction pathway in hepatocytes. We report that chronic treatment, not acute treatment, with 30 μM 14,15-EETs prevents palmitate induced insulin resistance and potentiates insulin action in cultured HepG2 hepatocytes. 14,15-EETs increase Akt phosphorylation at S473, activating Akt, in an insulin dependent manner in HepG2 cells. Under insulin resistant conditions induced by palmitate, 14,15-EETs restore the insulin response by increasing S473-phosphorylated Akt. 8,9-EETs and 11,12-EETs demonstrated similar effects to 14,15-EETs. Furthermore, 14,15-EETs potentiate insulin-suppression of gluconeogenesis in cultured H4IIE hepatocytes. To elucidate the mechanism of EETs function, we analyzed the insulin signaling factors upstream of Akt. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 attenuated the 14,15-EETs-induced activating phosphorylation of Akt. 14,15-EETs reduced palmitate-stimulated phosphorylation of IRS-1 on S312 and phosphorylation of c-Jun N-terminal kinase (JNK) at threonine 183 and tyrosine 185 residues. The regulation of insulin sensitivity in cultured hepatocytes by chronic 14,15-EETs treatment appears to involve the JNK-IRS-PI3K pathway. The requirement of chronic treatment with EETs suggests that the effects of EETs on insulin response may be indirect.  相似文献   

10.
In an attempt to clarify the role of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in muscle insulin resistance, we investigated the effect of PTEN on phosphoinositide 3 (PI3)-kinase/Akt related insulin signaling pathway in skeletal muscle-like C2C12 cells damaged by tumor necrosis factor-alpha (TNFalpha). C2C12 cells cultured with TNFalpha (10 ng/ml) for 1 h displayed a marked decrease of insulin-stimulated 2-[14C]-deoxy-D-glucose (2-DG) uptake in parallel with an elevation of PTEN mRNA and protein levels. However, pretreatment of PTEN antisense oligonucleotide (AS) (1 micromol/l for 3 days) for specific inhibition of PTEN expression in C2C12 cells abolished the TNFalpha-induced changes in 2-DG uptake. Similar pretreatment with PTEN AS, but not with sense oligonucleotide (1 micromol/l for 3 days), eliminated the ability of TNFalpha to impair insulin-stimulated signals including p85 regulatory subunit of PI3-kinase expression and the degree of Akt serine phosphorylation as well as protein expression in glucose transporter subtype 4. Data taken from cultured C2C12 cells emphasize the negative regulatory of muscle PI3-kinase/Akt signaling pathways as the major substrate of PTEN but also support the concept that PTEN contributes to the development of insulin resistance in skeletal muscle.  相似文献   

11.
It is known that ischemia/reperfusion induces neurodegeneration in the hippocampus in a subregion‐dependent manner. This study investigated the mechanism of selective resistance/vulnerability to oxygen–glucose deprivation (OGD) using mouse organotypic hippocampal cultures. Analysis of propidium iodide uptake showed that OGD‐induced duration‐ and subregion‐dependent neuronal injury. When compared with the CA1–3 subregions, dentate neuronal survival was more sensitive to inhibition of phosphatidylinositol 3‐kinase (PI3K)/Akt signaling under basal conditions. Dentate neuronal sensitivity to PI3K/Akt signaling activation was inversely related to its vulnerability to OGD‐induced injury; insulin/insulin‐like growth factor 1 pre‐treatment conferred neuroprotection to dentate neurons via activation of PI3K/Akt signaling. In contrast, CA1 and CA3 neurons were less sensitive to disruptions of endogenous PI3K/Akt signaling and protective effects of insulin/insulin‐like growth factor 1, but more vulnerable to OGD. OGD‐induced injury in CA1 was reduced by inhibition of NMDA receptor or mitogen‐activated protein kinase signaling, and was prevented by blocking NMDA receptor in the presence of insulin. The CA2 subregion was distinctive in its response to glutamate, OGD, and insulin, compared with other CA subregions. CA2 neurons were sensitive to the protective effects of insulin against OGD‐induced injury, but more resistant to glutamate. Distinctive distribution of insulin receptor β and basal phospho‐Akt was detected in our slice cultures. Our results suggest a role for insulin signaling in subregional resistance/vulnerability to cerebral ischemia.  相似文献   

12.
Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.  相似文献   

13.
The contribution of zinc-mediated neuronal death in the process of both acute and chronic neurodegeneration has been increasingly appreciated. Phosphatase and tensin homologue, deleted on chromosome 10 (PTEN), the major tumor suppressor and key regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, plays a critical role in neuronal death in response to various insults. NEDD4-1-mediated PTEN ubiquitination and subsequent degradation via the ubiquitin proteosomal system have recently been demonstrated to be the important regulatory mechanism for PTEN in several cancer types. We now demonstrate that PTEN is also the key mediator of the PI3K/Akt pathway in the neuronal response to zinc insult. We used primary cortical neurons and neuroblastoma N2a cells to show that zinc treatment results in a reduction of the PTEN protein level in parallel with increased NEDD4-1 gene/protein expression. The reduced PTEN level is associated with an activated PI3K pathway as determined by elevated phosphorylation of both Akt and GSK-3 as well as by the attenuating effect of a specific PI3K inhibitor (wortmannin). The reduction of PTEN can be attributed to increased protein degradation via the ubiquitin proteosomal system, as we show NEDD4-1 to be the major E3 ligase responsible for PTEN ubiquitination in neurons. Moreover, PTEN and NEDD4-1 appear to be able to counter-regulate each other to mediate the neuronal response to zinc. This reciprocal regulation requires the PI3K signaling pathway, suggesting a feedback loop mechanism. This study demonstrates that NEDD4-1-mediated PTEN ubiquitination is crucial in the regulation of PI3K/Akt signaling by PTEN during the neuronal response to zinc, which may represent a common mechanism in neurodegeneration.  相似文献   

14.
Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n = 3) min after an intravenous bolus of GH (0.5 mg) vs. saline in conjunction with serum sampling in six healthy males after an overnight fast. Expression of the following signal proteins were assayed by Western blotting: STAT5/p-STAT5, MAPK, and Akt/PKB. IRS-1-associated PI 3-kinase activity was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5 was detected in muscle and fat of all subjects after GH. Activation of MAPK was observed in several lysates but without GH dependency. Neither PKB/Akt nor PI 3-kinase activity was affected by GH. GH-induced STAT5 DNA binding and expression of IGF-I mRNA were detected in fat, whereas expression of SOCS-1 and -3 tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human in vivo model may be used to study the mechanisms subserving the actions of GH on substrate metabolism and insulin sensitivity in muscle and fat.  相似文献   

15.
16.
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.  相似文献   

17.
In a past decade became evident that phosphatidylinositol-3-kinase controlled signal transduction cascade (PI3K/Akt/PTEN/mTOR) is implicated in resistance of tumor cells to anticancer drugs. Another well studied mechanism of multidrug resistance is associated with the activity of drug transporters of ABC superfamily (first of all P-glycoprotein (Pgp), MRP1, BCRP). Several mechanisms of cell defense can be turned on in one cell. The interconnections between different mechanisms involved in drug resistance are poorly studied. In the present study we used PC3 and DU145 human prostate cell lines to show that PTEN functional status determines level of cell resistance to some drugs, it correlates with expression level of MRP1 and BCRP proteins. We showed that Pgp is not involved in development of drug resistance in these cells. Transfection of PTEN into PTEN-deficient PC3 as well as rapamycin treatment caused the inhibition of PI3K/Akt/mTOR signaling and resulted in cell sensitization to the action of doxorubicin and vinblastine. We showed that PTEN transfection leads to the change in expression of MRP1 and BCRP. Our results show that in prostate cancer cells at least two mechanisms of drug resistance are interconnected. PTEN and mTOR signaling were shown: to be involved into regulation of MRP1 and BCRP.  相似文献   

18.
We have previously demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling is essential for pancreatic regeneration after partial pancreatectomy in mice. In the present study, we examined a role of PI3K/Akt signaling for pancreatic duct cell differentiation into insulin-producing cells. Epithelial-like cells were isolated from mouse pancreas and confirmed to be positive for a duct cell marker cytokeratin-20 (CK-20) but negative for insulin. Incubation of these cells with epidermal growth factor, exhibited a gradual increase in Akt phosphorylation and expression of pancreatic duodenal homeobox-1 (PDX-1), a regulator of β-cell differentiation. Three weeks later, these CK-20-positive cells were noted to express insulin as determined by immunofluorescent double-staining. Akt phosphorylation, PDX-1 expression, and insulin production were effectively reduced by blocking the PI3K/Akt pathway using siRNA to the p85α regulatory subunit of PI3K. Our results demonstrate that PI3K/Akt activation has a critical role for pancreatic duct cell differentiation into insulin-producing cells.  相似文献   

19.
Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.  相似文献   

20.
PTEN is a tumor suppressor that antagonizes phosphatidylinositol-3 kinase (PI3K) by dephosphorylating the D3 position of phosphatidylinositol (3,4,5)-triphosphate (PtdIns-3,4,5-P3). Given the importance of PTEN in regulating PtdIns-3,4,5-P3 levels, we used Affymetrix GeneChip arrays to identify genes regulated by PTEN. PTEN expression rapidly reduced the activity of Akt, which was followed by a G(1) arrest and eventually apoptosis. The gene encoding insulin receptor substrate 2 (IRS-2), a mediator of insulin signaling, was found to be the most induced gene at all time points. A PI3K-specific inhibitor, LY294002, also upregulated IRS-2, providing evidence that it was the suppression of the PI3K pathway that was responsible for the message upregulation. In addition, PTEN, LY294002, and rapamycin, an inhibitor of mammalian target of rapamycin, caused a reduction in the molecular weight of IRS-2 and an increase in the association of IRS-2 with PI3K. Apparently, PTEN inhibits a negative regulator of IRS-2 to upregulate the IRS-2-PI3K interaction. These studies suggest that PtdIns-3,4,5-P3 levels regulate the specific activity and amount of IRS-2 available for insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号