首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Reaction time (RT) and error rate that depend on stimulus duration were measured in a luminance-discrimination reaction time task. Two patches of light with different luminance were presented to participants for ‘short’ (150 ms) or ‘long’ (1 s) period on each trial. When the stimulus duration was ‘short’, the participants responded more rapidly with poorer discrimination performance than they did in the longer duration. The results suggested that different sensory responses in the visual cortices were responsible for the dependence of response speed and accuracy on the stimulus duration during the luminance-discrimination reaction time task. It was shown that the simple winner-take-all-type neural network model receiving transient and sustained stimulus information from the primary visual cortex successfully reproduced RT distributions for correct responses and error rates. Moreover, temporal spike sequences obtained from the model network closely resembled to the neural activity in the monkey prefrontal or parietal area during other visual decision tasks such as motion discrimination and oddball detection tasks.  相似文献   

2.
During the foreperiod of a forewarned reaction time (RT) task reflexes in the executing limb increase to a lesser extent than those in the contralateral limb. This is possibly due to input modulation. The present study investigates the possibility of cutaneous sensory modulation during motor preparation by studying the amplitudes of somatosensory evoked potentials (SEPs). Eighteen subjects performed a forewarned RT task with the same fingers as the ones which were electrically stimulated. SEPs evoked during the 4 sec preparatory period were compared to those evoked during movement execution and during the resting period after the motor response respectively. During response execution most SEP components showed smaller amplitudes, i.e., they were gated, which agrees with other studies. In the first part of the foreperiod no SEP modulation was observed. Towards the end of the foreperiod, 500 msec before the response stimulus (RS), the amplitude of the contralateral parietal N70-P100 was significantly decreased, while the P45-N70 showed a similar tendency. However, at the same time the P100-N140 was increased in amplitude. The decrease of the intermediate latency components towards the end of the foreperiod is discussed in terms of gating, while the increase in the long latency component is discussed with respect to a decrease in RT on trials where the fingers were stimulated just before the RS, pointing to the role of attentional mechanisms.  相似文献   

3.
Mice were trained on a variety of odor detection and discrimination tasks in 100- or 200-trial sessions using a go, no-go discrete trials operant conditioning procedure. Odors, presented for 1 s on each trial, were generated by an air dilution olfactometer (for threshold tests) and an easily constructed eight-channel liquid dilution unit (for two- and multiple-odor discrimination tasks). Mice rapidly acquired the operant task and demonstrated excellent stimulus control by odor vapors. Their absolute detection threshold for ethyl acetate was similar to that obtained with rats using similar methods. They readily acquired four separate two-odor discrimination tasks and continued to perform well when all eight odors were presented in random order in the same session and when reinforcement probability for correct responding was decreased from 1 to 0.5. Memory for these eight odors, assessed under extinction after a 32 day rest period, was essentially perfect. Time spent sampling the odor on S+ and S- trials was highly correlated with response accuracy. When accuracy was at chance levels (e.g. initial trials on a novel task), stimulus sampling time on both S+ and S- trials was approximately 0.5-0.7 s. As response accuracy increased, sampling time on S+ trials tended to increase and remain higher than sampling time on S- trials.  相似文献   

4.
We designed a behavioural paradigm for vibro-tactile detection to characterise the sampling time and performance in the rat whisker sensory system. Rats initiated a trial by nose-poking into an aperture where their whiskers came into contact with two meshes. A continuous nose-poke for a random duration triggered stimulus presentation. Stimuli were a sequence of discrete Gaussian deflections of the mesh that increased in amplitude over time – across 5 conditions, time to maximum amplitude varied from 0.5 to 8 seconds. Rats indicated the detected stimulus by choosing between two reward spouts. Two rats completed more than 500 trials per condition. Rats'' stimulus sampling duration increased and performance dropped with increasing task difficulty. For all conditions the median reaction time was longer for correct trials than incorrect trials. Higher rates of increment in stimulus amplitude resulted in faster rise in performance as a function of stimulus sampling duration. Rats'' behaviour indicated a dynamic stimulus sampling whereby nose-poke was maintained until a stimulus was correctly identified or the rat experienced a false alarm. The perception was then manifested in behaviour after a motor delay. We thus modelled the results with 3 parameters: signal detection, false alarm, and motor delay. The model captured the main features of the data and produced parameter estimates that were biologically plausible and highly similar across the two rats.  相似文献   

5.
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD.  相似文献   

6.
We interact with the world through the assessment of available, but sometimes imperfect, sensory information. However, little is known about how variance in the quality of sensory information affects the regulation of controlled actions. In a series of three experiments, comprising a total of seven behavioral studies, we examined how different types of spatial frequency information affect underlying processes of response inhibition and selection. Participants underwent a stop-signal task, a two choice speed/accuracy balance experiment, and a variant of both these tasks where prior information was given about the nature of stimuli. In all experiments, stimuli were either intact, or contained only high-, or low- spatial frequencies. Overall, drift diffusion model analysis showed a decreased rate of information processing when spatial frequencies were removed, whereas the criterion for information accumulation was lowered. When spatial frequency information was intact, the cost of response inhibition increased (longer SSRT), while a correct response was produced faster (shorter reaction times) and with more certainty (decreased errors). When we manipulated the motivation to respond with a deadline (i.e., be fast or accurate), removal of spatial frequency information slowed response times only when instructions emphasized accuracy. However, the slowing of response times did not improve error rates, when compared to fast instruction trials. These behavioral studies suggest that the removal of spatial frequency information differentially affects the speed of response initiation, inhibition, and the efficiency to balance fast or accurate responses. More generally, the present results indicate a task-independent influence of basic sensory information on strategic adjustments in action control.  相似文献   

7.
During their first year of growth yellow perch, Perca flavescens, undergo an ontogenetic niche shift from invertebrate feeding to piscivory. They also undergo a similar shift in their response to heterospecific alarm cues, switching from anti-predator to foraging behaviour. We conducted laboratory trials to determine whether yellow perch experience a comparable ontogenetic shift in their response to conspecific alarm cues. When exposed to either young-of-year (YOY) or adult perch skin extract, YOY perch responded with decreased time in motion and number of feeding attempts as well as increased time spent with spines erect and latency to first feeding attempt, all of which are indicative of an anti-predator response. Adult perch, when exposed to the same cues, responded with increased time spent moving and number of feeding attempts as well as decreased time spent with spines erect and latency to first feeding attempt, indicative of a foraging response. These data suggest that yellow perch undergo an ontogenetic niche shift in response to conspecific alarm cues.  相似文献   

8.
Relations describing threshold fluctuation phenomena in nerves are derived by calculating the approximate response of the Hodgkin-Huxley (HH) axon to electrical noise. We use FitzHugh's reduced phase space approximation and describe the dynamics of a noisy nerve by a two-dimensional brownian motion. The theory predicts the functional form and parametric dependence of the relation between probability of firing and stimulus strength. Expressions are also obtained for the firing probability as a function of stimulus duration and for the distribution of latency times as a function of stimulus strength.  相似文献   

9.
Species-specific reaction of thumping behaviour with the hind limbs in response to electrical stimulation of the ventromedial, dorsomedial and caudal parts of the hypothalamus was studied in chronic experiments on rabbits. Reaction of avoidance dominated during current action of various durations (1-20 s). The specific reaction under study appeared after the termination of stimulation and lasted for 30-120 s. The number of kicks in response to single stimulation depended on its duration (T). With T rising from 1 to 10 s, the number of kicks increased; with T being equal to 20 s, it decreased. The latency of the first kick after the termination of stimulation regularily increased with increase of its duration, and reaction intensity maxima shifted to the right along the axis of time. Possible mechanisms of limb kicking behaviour are discussed based on a transition of avoidance reaction during stimulus action to emotional reaction in post-stimulus period.  相似文献   

10.
Transcranial magnetic stimulation (TMS) allows non-invasive manipulation of brain activity during active task performance. Because every TMS pulse is accompanied by non-neural effects such as a clicking sound and somato-sensation on the head, control conditions are required to ensure that changes in task behavior are indeed due to the induced neural effects. However, the non-neural effects of TMS in the context of a given task performance are largely unknown and, consequently, it is unclear what constitutes a valid control condition. We explored the non-neural effects of TMS on visual target detection. Participants received single pulse sham TMS to each hemisphere at different time points prior to target appearance during a visual target detection task. It was hypothesized that the clicking sound of a sham TMS pulse differentially affects performance depending on the location of the coil and the timing of the pulse.Our results show that, first, sham TMS caused a facilitation of reaction times when preceding the target stimulus by 150, 200, and 250 ms, whereas earlier and later time windows were not effective. Second, positioning the TMS coil ipsilateral instead of contralateral relative to the target stimulus improved reaction times. Third, infrequent noTMS trials that were interleaved with sham TMS trials had oddball-like properties resulting in increased reaction times during noTMS. The clicking sound produced by sham TMS influences task performance in multiple ways. These non-neural effects of TMS need to be controlled for in TMS research and the present findings provide an empirical basis for deciding what constitutes a valid control condition.  相似文献   

11.
The influence of stimulus duration on auditory evoked potentials (AEPs) was examined for tones varying randomly in duration, location, and frequency in an auditory selective attention task. Stimulus duration effects were isolated as duration difference waves by subtracting AEPs to short duration tones from AEPs to longer duration tones of identical location, frequency and rise time. This analysis revealed that AEP components generally increased in amplitude and decreased in latency with increments in signal duration, with evidence of longer temporal integration times for lower frequency tones. Different temporal integration functions were seen for different N1 subcomponents. The results suggest that different auditory cortical areas have different temporal integration times, and that these functions vary as a function of tone frequency.  相似文献   

12.
Grooming behavior in laboratory brown rats was analysed in the course of extrapolation task solving. Cases of task solution (correct and incorrect) were compared with those when animal "refused" to turn round the screen during search of food bait. In latter cases grooming episodes were more numerous, their latency and duration being higher than during former cases. At the same time the latest stages of experiment (when 8-13 trials a day twice a week were presented) were characterized by more frequent grooming occurrence as well as by longer latencies and duration of grooming episodes. When rats were given I trial a day with one week intervals grooming incidence as well as "refusals" occurrence decreased. The possible participation of animal grooming in arranging the defense reactions against excessive and inadequate activity is discussed.  相似文献   

13.
In perceptual decision making, the selection of an appropriate action depends critically on an organism’s ability to use sensory inputs to accumulate evidence for a decision. However, differentiating decision-related processes from effects of “time on task” can be difficult. Here we combine the response signal paradigm, in which the experimenter rather than the subject dictates the time of the response, and independent components analysis (ICA) to search for signatures consistent with time on task and decision making, respectively, throughout the brain. Using this novel approach, we identify two such independent components from BOLD activity related to a random dot motion task: one sensitive to the main effect of stimulus duration, and one to both the main effect of motion coherence and its interaction with duration. Furthermore, we demonstrate that these two components are expressed differently throughout the brain, with activity in occipital regions most reflective of the former, activity within intraparietal sulcus modulated by both factors, and more anterior regions including the anterior insula, pre-SMA, and inferior frontal sulcus driven almost exclusively by the latter. Consistent with these ICA findings, cluster analysis identifies a posterior-to-anterior gradient that differentiates regions sensitive to time on task from regions whose activity is strongly tied to motion coherence. Together, these findings demonstrate that progressively more anterior regions are likely to participate in progressively more proximate decision-related processes.  相似文献   

14.
Sensory responses of the brain are known to be highly variable, but the origin and functional relevance of this variability have long remained enigmatic. Using the variable foreperiod of a visual discrimination task to assess variability in the primate cerebral cortex, we report that visual evoked response variability is not only tied to variability in ongoing cortical activity, but also predicts mean response time. We used cortical local field potentials, simultaneously recorded from widespread cortical areas, to gauge both ongoing and visually evoked activity. Trial-to-trial variability of sensory evoked responses was strongly modulated by foreperiod duration and correlated both with the cortical variability before stimulus onset as well as with response times. In a separate set of experiments we probed the relation between small saccadic eye movements, foreperiod duration and manual response times. The rate of eye movements was modulated by foreperiod duration and eye position variability was positively correlated with response times. Our results indicate that when the time of a sensory stimulus is predictable, reduction in cortical variability before the stimulus can improve normal behavioral function that depends on the stimulus.  相似文献   

15.
16.
In electrophysiological and psychophysical experiments, we investigated mechanisms of the visual system underlying local and global texture processing. Textures included rectangular matrixes composed of Gabor patches (sine wave grating windowed by a Gaussian envelope). Orientation of each grating varied from 0 to 165 degrees with the step of 15 degrees. Matrixes differed by the amount of Gabor patches with vertical or horizontal orientation. The observers' task was to discriminate the dominant orientation. The advantage of such stimuli involved a possibility to calculate global statistics of the textures, which we considered as the difference between whole amount of vertical and horizontal orientations in the stimulus irrespective of their location. The local statistics was calculated as relative amount of spatially organized nearby gratings (i. e. collinear contours). The subjects' accuracy was low in discriminating less organized textures and gradually improved with the amount of vertically of horizontally oriented Gabor patches, while the reaction time decreased. Visual evoked potentials (VEPs) recorded from occipital lobes revealed different dependencies of their components' magnitude on the amount of equally oriented gratings. Amplitude of the late positive component P3 with latency 400 ms directly depended on the texture discriminability, and N2 wave with latency 180 ms had an S-like dependence. Opposite to that, the magnitude of P2 wave with latency 260 ms was maximal in response to less organized textures and gradually decreased with the amount of equally oriented gratings. The dependencies received were compared with the textures' statistics. Data analysis allowed us to suppose that, in the conditions of our experimental paradigm, two mechanisms were involved in discrimination of the textures--the local and the global processing. We believe that by recording VEPs one can separately investigate activity of these two processes.  相似文献   

17.
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple 'race to threshold' readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.  相似文献   

18.
Zhou H  Desimone R 《Neuron》2011,70(6):1205-1217
When we search for a target in a crowded visual scene, we often use the distinguishing features of the target, such as color or shape, to guide our attention and eye movements. To investigate the neural mechanisms of feature-based attention, we simultaneously recorded neural responses in the frontal eye field (FEF) and area V4 while monkeys performed a visual search task. The responses of cells in both areas were modulated by feature attention, independent of spatial attention, and the magnitude of response enhancement was inversely correlated with the number of saccades needed to find the target. However, an analysis of the latency of sensory and attentional influences on responses suggested that V4 provides bottom-up sensory information about stimulus features, whereas the FEF provides a top-down attentional bias toward target features that modulates sensory processing in V4 and that could be used to guide the eyes to a searched-for target.  相似文献   

19.
Perception relies on the response of populations of neurons in sensory cortex. How the response profile of a neuronal population gives rise to perception and perceptual discrimination has been conceptualized in various ways. Here we suggest that neuronal population responses represent information about our environment explicitly as Fisher information (FI), which is a local measure of the variance estimate of the sensory input. We show how this sensory information can be read out and combined to infer from the available information profile which stimulus value is perceived during a fine discrimination task. In particular, we propose that the perceived stimulus corresponds to the stimulus value that leads to the same information for each of the alternative directions, and compare the model prediction to standard models considered in the literature (population vector, maximum likelihood, maximum-a-posteriori Bayesian inference). The models are applied to human performance in a motion discrimination task that induces perceptual misjudgements of a target direction of motion by task irrelevant motion in the spatial surround of the target stimulus (motion repulsion). By using the neurophysiological insight that surround motion suppresses neuronal responses to the target motion in the center, all models predicted the pattern of perceptual misjudgements. The variation of discrimination thresholds (error on the perceived value) was also explained through the changes of the total FI content with varying surround motion directions. The proposed FI decoding scheme incorporates recent neurophysiological evidence from macaque visual cortex showing that perceptual decisions do not rely on the most active neurons, but rather on the most informative neuronal responses. We statistically compare the prediction capability of the FI decoding approach and the standard decoding models. Notably, all models reproduced the variation of the perceived stimulus values for different surrounds, but with different neuronal tuning characteristics underlying perception. Compared to the FI approach the prediction power of the standard models was based on neurons with far wider tuning width and stronger surround suppression. Our study demonstrates that perceptual misjudgements can be based on neuronal populations encoding explicitly the available sensory information, and provides testable neurophysiological predictions on neuronal tuning characteristics underlying human perceptual decisions.  相似文献   

20.
  1. Extracellular recordings from wide-field nonhabituating non-directional (ND) motion detecting neurons in the second optic chiasma of the locust Locusta migratoria are presented. The responses to various types of stepwise moving spot and bar stimuli were monitored (Fig. 1)
  2. Stepwise motion in all directions elicited bursts of spikes. The response is inhibited at stimulus velocities above 5°/s. At velocities above 10°/s the ND neurons are slightly more sensitive to motion in the horizontal direction than to motion in the vertical direction (Fig. 2). The ND cells have a preference for small moving stimuli (Fig. 3).
  3. The motion response has two peaks. The latency of the second peak depends on stimulus size and stimulus velocity. Increasing the height from 0.1 to 23.5° of a 5°/s moving bar results in a lowering of this latency time from 176 to 130 ms (Fig. 4). When the velocity from a single 0.1° spot is increased from 1 to 16°/s, the latency decreases from 282 to 180 ms (Figs. 5–6).
  4. A change-of-direction sensitivity is displayed. Stepwise motion in one particular direction produces a continuous burst of spike discharges. Reversal or change in direction leads to an inhibition of the response (Fig. 7).
  5. It shows that non-directional motion perception of the wide-field ND cells can simply be explained by combining self-and lateral inhibition.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号