首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Zipf''s discovery that word frequency distributions obey a power law established parallels between biological and physical processes, and language, laying the groundwork for a complex systems perspective on human communication. More recent research has also identified scaling regularities in the dynamics underlying the successive occurrences of events, suggesting the possibility of similar findings for language as well.

Methodology/Principal Findings

By considering frequent words in USENET discussion groups and in disparate databases where the language has different levels of formality, here we show that the distributions of distances between successive occurrences of the same word display bursty deviations from a Poisson process and are well characterized by a stretched exponential (Weibull) scaling. The extent of this deviation depends strongly on semantic type – a measure of the logicality of each word – and less strongly on frequency. We develop a generative model of this behavior that fully determines the dynamics of word usage.

Conclusions/Significance

Recurrence patterns of words are well described by a stretched exponential distribution of recurrence times, an empirical scaling that cannot be anticipated from Zipf''s law. Because the use of words provides a uniquely precise and powerful lens on human thought and activity, our findings also have implications for other overt manifestations of collective human dynamics.  相似文献   

2.

Background

Word frequency is the most important variable in language research. However, despite the growing interest in the Chinese language, there are only a few sources of word frequency measures available to researchers, and the quality is less than what researchers in other languages are used to.

Methodology

Following recent work by New, Brysbaert, and colleagues in English, French and Dutch, we assembled a database of word and character frequencies based on a corpus of film and television subtitles (46.8 million characters, 33.5 million words). In line with what has been found in the other languages, the new word and character frequencies explain significantly more of the variance in Chinese word naming and lexical decision performance than measures based on written texts.

Conclusions

Our results confirm that word frequencies based on subtitles are a good estimate of daily language exposure and capture much of the variance in word processing efficiency. In addition, our database is the first to include information about the contextual diversity of the words and to provide good frequency estimates for multi-character words and the different syntactic roles in which the words are used. The word frequencies are freely available for research purposes.  相似文献   

3.

Background

The capacity to memorize speech sounds is crucial for language acquisition. Newborn human infants can discriminate phonetic contrasts and extract rhythm, prosodic information, and simple regularities from speech. Yet, there is scarce evidence that infants can recognize common words from the surrounding language before four months of age.

Methodology/Principal Findings

We studied one hundred and twelve 1-5 day-old infants, using functional near-infrared spectroscopy (fNIRS). We found that newborns tested with a novel bisyllabic word show greater hemodynamic brain response than newborns tested with a familiar bisyllabic word. We showed that newborns recognize the familiar word after two minutes of silence or after hearing music, but not after hearing a different word.

Conclusions/Significance

The data show that retroactive interference is an important cause of forgetting in the early stages of language acquisition. Moreover, because neonates forget words in the presence of some –but not all– sounds, the results indicate that the interference phenomenon that causes forgetting is selective.  相似文献   

4.
5.
6.

Objectives

Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern.

Experimental design

Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition.

Principal findings

The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca''s area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects.

Conclusions

Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words.  相似文献   

7.

Background

Previous studies have claimed that a precise split at the vertical midline of each fovea causes all words to the left and right of fixation to project to the opposite, contralateral hemisphere, and this division in hemispheric processing has considerable consequences for foveal word recognition. However, research in this area is dominated by the use of stimuli from Latinate languages, which may induce specific effects on performance. Consequently, we report two experiments using stimuli from a fundamentally different, non-Latinate language (Arabic) that offers an alternative way of revealing effects of split-foveal processing, if they exist.

Methods and Findings

Words (and pseudowords) were presented to the left or right of fixation, either close to fixation and entirely within foveal vision, or further from fixation and entirely within extrafoveal vision. Fixation location and stimulus presentations were carefully controlled using an eye-tracker linked to a fixation-contingent display. To assess word recognition, Experiment 1 used the Reicher-Wheeler task and Experiment 2 used the lexical decision task.

Results

Performance in both experiments indicated a functional division in hemispheric processing for words in extrafoveal locations (in recognition accuracy in Experiment 1 and in reaction times and error rates in Experiment 2) but no such division for words in foveal locations.

Conclusions

These findings from a non-Latinate language provide new evidence that although a functional division in hemispheric processing exists for word recognition outside the fovea, this division does not extend up to the point of fixation. Some implications for word recognition and reading are discussed.  相似文献   

8.
In this paper we analyse the word frequency profiles of a set of works from the Shakespearean era to uncover patterns of relationship between them, highlighting the connections within authorial canons. We used a text corpus comprising 256 plays and poems from the 16th and 17th centuries, with 17 works of uncertain authorship. Our clustering approach is based on the Jensen-Shannon divergence and a graph partitioning algorithm, and our results show that authors'' characteristic styles are very powerful factors in explaining the variation of word use, frequently transcending cross-cutting factors like the differences between tragedy and comedy, early and late works, and plays and poems. Our method also provides an empirical guide to the authorship of plays and poems where this is unknown or disputed.  相似文献   

9.

Background

The popular theory that complex tool-making and language co-evolved in the human lineage rests on the hypothesis that both skills share underlying brain processes and systems. However, language and stone tool-making have so far only been studied separately using a range of neuroimaging techniques and diverse paradigms.

Methodology/Principal Findings

We present the first-ever study of brain activation that directly compares active Acheulean tool-making and language. Using functional transcranial Doppler ultrasonography (fTCD), we measured brain blood flow lateralization patterns (hemodynamics) in subjects who performed two tasks designed to isolate the planning component of Acheulean stone tool-making and cued word generation as a language task. We show highly correlated hemodynamics in the initial 10 seconds of task execution.

Conclusions/Significance

Stone tool-making and cued word generation cause common cerebral blood flow lateralization signatures in our participants. This is consistent with a shared neural substrate for prehistoric stone tool-making and language, and is compatible with language evolution theories that posit a co-evolution of language and manual praxis. In turn, our results support the hypothesis that aspects of language might have emerged as early as 1.75 million years ago, with the start of Acheulean technology.  相似文献   

10.

Background

Studies demonstrating the involvement of motor brain structures in language processing typically focus on time windows beyond the latencies of lexical-semantic access. Consequently, such studies remain inconclusive regarding whether motor brain structures are recruited directly in language processing or through post-linguistic conceptual imagery. In the present study, we introduce a grip-force sensor that allows online measurements of language-induced motor activity during sentence listening. We use this tool to investigate whether language-induced motor activity remains constant or is modulated in negative, as opposed to affirmative, linguistic contexts.

Methodology/Principal Findings

Participants listened to spoken action target words in either affirmative or negative sentences while holding a sensor in a precision grip. The participants were asked to count the sentences containing the name of a country to ensure attention. The grip force signal was recorded continuously. The action words elicited an automatic and significant enhancement of the grip force starting at approximately 300 ms after target word onset in affirmative sentences; however, no comparable grip force modulation was observed when these action words occurred in negative contexts.

Conclusions/Significance

Our findings demonstrate that this simple experimental paradigm can be used to study the online crosstalk between language and the motor systems in an ecological and economical manner. Our data further confirm that the motor brain structures that can be called upon during action word processing are not mandatorily involved; the crosstalk is asymmetrically governed by the linguistic context and not vice versa.  相似文献   

11.
Kanske P  Kotz SA 《PloS one》2012,7(1):e30086

Background

The study of emotional speech perception and emotional prosody necessitates stimuli with reliable affective norms. However, ratings may be affected by the participants'' current emotional state as increased anxiety and depression have been shown to yield altered neural responding to emotional stimuli. Therefore, the present study had two aims, first to provide a database of emotional speech stimuli and second to probe the influence of depression and anxiety on the affective ratings.

Methodology/Principal Findings

We selected 120 words from the Leipzig Affective Norms for German database (LANG), which includes visual ratings of positive, negative, and neutral word stimuli. These words were spoken by a male and a female native speaker of German with the respective emotional prosody, creating a total set of 240 auditory emotional stimuli. The recordings were rated again by an independent sample of subjects for valence and arousal, yielding groups of highly arousing negative or positive stimuli and neutral stimuli low in arousal. These ratings were correlated with participants'' emotional state measured with the Depression Anxiety Stress Scales (DASS). Higher depression scores were related to more negative valence of negative and positive, but not neutral words. Anxiety scores correlated with increased arousal and more negative valence of negative words.

Conclusions/Significance

These results underscore the importance of representatively distributed depression and anxiety scores in participants of affective rating studies. The LANG-audition database, which provides well-controlled, short-duration auditory word stimuli for the experimental investigation of emotional speech is available in Supporting Information S1.  相似文献   

12.

Background

It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question.

Methodology/Principal Findings

MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100–250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ∼130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ∼115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ∼140 ms, at a location coincident with the fMRI–defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus.

Conclusions/Significance

These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.  相似文献   

13.

Background

Zipf''s law states that the relationship between the frequency of a word in a text and its rank (the most frequent word has rank , the 2nd most frequent word has rank ,…) is approximately linear when plotted on a double logarithmic scale. It has been argued that the law is not a relevant or useful property of language because simple random texts - constructed by concatenating random characters including blanks behaving as word delimiters - exhibit a Zipf''s law-like word rank distribution.

Methodology/Principal Findings

In this article, we examine the flaws of such putative good fits of random texts. We demonstrate - by means of three different statistical tests - that ranks derived from random texts and ranks derived from real texts are statistically inconsistent with the parameters employed to argue for such a good fit, even when the parameters are inferred from the target real text. Our findings are valid for both the simplest random texts composed of equally likely characters as well as more elaborate and realistic versions where character probabilities are borrowed from a real text.

Conclusions/Significance

The good fit of random texts to real Zipf''s law-like rank distributions has not yet been established. Therefore, we suggest that Zipf''s law might in fact be a fundamental law in natural languages.  相似文献   

14.

Background

The extraordinarily high incidence of grammatical language impairments in developmental disorders suggests that this uniquely human cognitive function is “fragile”. Yet our understanding of the neurobiology of grammatical impairments is limited. Furthermore, there is no “gold-standard” to identify grammatical impairments and routine screening is not undertaken. An accurate screening test to identify grammatical abilities would serve the research, health and education communities, further our understanding of developmental disorders, and identify children who need remediation, many of whom are currently un-diagnosed. A potential realistic screening tool that could be widely administered is the Grammar and Phonology Screening (GAPS) test – a 10 minute test that can be administered by professionals and non-professionals alike. Here we provide a further step in evaluating the validity and accuracy (sensitivity and specificity) of the GAPS test in identifying children who have Specific Language Impairment (SLI).

Methods and Findings

We tested three groups of children; two groups aged 3;6–6:6, a typically developing (n = 30) group, and a group diagnosed with SLI: (n = 11) (Young (Y)-SLI), and a further group aged 6;9–8;11 with SLI (Older (O)-SLI) (n = 10) who were above the test age norms. We employed a battery of language assessments including the GAPS test to assess the children''s language abilities. For Y-SLI children, analyses revealed a sensitivity and specificity at the 5th and 10th percentile of 1.00 and 0.98, respectively, and for O-SLI children at the 10th and 15th percentile .83 and .90, respectively.

Conclusions

The findings reveal that the GAPS is highly accurate in identifying impaired vs. non-impaired children up to 6;8 years, and has moderate-to-high accuracy up to 9 years. The results indicate that GAPS is a realistic tool for the early identification of grammatical abilities and impairment in young children. A larger investigation is warranted in children with SLI and other developmental disorders.  相似文献   

15.

Background

During sentence processing we decode the sequential combination of words, phrases or sentences according to previously learned rules. The computational mechanisms and neural correlates of these rules are still much debated. Other key issue is whether sentence processing solely relies on language-specific mechanisms or is it also governed by domain-general principles.

Methodology/Principal Findings

In the present study, we investigated the relationship between sentence processing and implicit sequence learning in a dual-task paradigm in which the primary task was a non-linguistic task (Alternating Serial Reaction Time Task for measuring probabilistic implicit sequence learning), while the secondary task were a sentence comprehension task relying on syntactic processing. We used two control conditions: a non-linguistic one (math condition) and a linguistic task (word processing task). Here we show that the sentence processing interfered with the probabilistic implicit sequence learning task, while the other two tasks did not produce a similar effect.

Conclusions/Significance

Our findings suggest that operations during sentence processing utilize resources underlying non-domain-specific probabilistic procedural learning. Furthermore, it provides a bridge between two competitive frameworks of language processing. It appears that procedural and statistical models of language are not mutually exclusive, particularly for sentence processing. These results show that the implicit procedural system is engaged in sentence processing, but on a mechanism level, language might still be based on statistical computations.  相似文献   

16.

Background

The journal Impact factor (IF) is generally accepted to be a good measurement of the relevance/quality of articles that a journal publishes. In spite of an, apparently, homogenous peer-review process for a given journal, we hypothesize that the country affiliation of authors from developing Latin American (LA) countries affects the IF of a journal detrimentally.

Methodology/Principal Findings

Seven prestigious international journals, one multidisciplinary journal and six serving specific branches of science, were examined in terms of their IF in the Web of Science. Two subsets of each journal were then selected to evaluate the influence of author''s affiliation on the IF. They comprised contributions (i) with authorship from four Latin American (LA) countries (Argentina, Brazil, Chile and Mexico) and (ii) with authorship from five developed countries (England, France, Germany, Japan and USA). Both subsets were further subdivided into two groups: articles with authorship from one country only and collaborative articles with authorship from other countries. Articles from the five developed countries had IF close to the overall IF of the journals and the influence of collaboration on this value was minor. In the case of LA articles the effect of collaboration (virtually all with developed countries) was significant. The IFs for non-collaborative articles averaged 66% of the overall IF of the journals whereas the articles in collaboration raised the IFs to values close to the overall IF.

Conclusion/Significance

The study shows a significantly lower IF in the group of the subsets of non-collaborative LA articles and thus that country affiliation of authors from non-developed LA countries does affect the IF of a journal detrimentally. There are no data to indicate whether the lower IFs of LA articles were due to their inherent inferior quality/relevance or psycho-social trend towards under-citation of articles from these countries. However, further study is required since there are foreseeable consequences of this trend as it may stimulate strategies by editors to turn down articles that tend to be under-cited.  相似文献   

17.

Background

Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI), which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone.

Methods and Findings

We presented participants with Grammatical(G)-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal.

Conclusions

The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.  相似文献   

18.

Background

Theories of embodied language suggest that the motor system is differentially called into action when processing motor-related versus abstract content words or sentences. It has been recently shown that processing negative polarity action-related sentences modulates neural activity of premotor and motor cortices.

Methods and Findings

We sought to determine whether reading negative polarity sentences brought about differential modulation of cortico-spinal motor excitability depending on processing hand-action related or abstract sentences. Facilitatory paired-pulses Transcranial Magnetic Stimulation (pp-TMS) was applied to the primary motor representation of the right-hand and the recorded amplitude of induced motor-evoked potentials (MEP) was used to index M1 activity during passive reading of either hand-action related or abstract content sentences presented in both negative and affirmative polarity. Results showed that the cortico-spinal excitability was affected by sentence polarity only in the hand-action related condition. Indeed, in keeping with previous TMS studies, reading positive polarity, hand action-related sentences suppressed cortico-spinal reactivity. This effect was absent when reading hand action-related negative polarity sentences. Moreover, no modulation of cortico-spinal reactivity was associated with either negative or positive polarity abstract sentences.

Conclusions

Our results indicate that grammatical cues prompting motor negation reduce the cortico-spinal suppression associated with affirmative action sentences reading and thus suggest that motor simulative processes underlying the embodiment may involve even syntactic features of language.  相似文献   

19.

Background

The existence and function of unilateral hemispheric projections within foveal vision may substantially affect foveal word recognition. The purpose of this research was to reveal these projections and determine their functionality.

Methodology

Single words (and pseudowords) were presented to the left or right of fixation, entirely within either foveal or extrafoveal vision. To maximize the likelihood of unilateral projections for foveal displays, stimuli in foveal vision were presented away from the midline. The processing of stimuli in each location was assessed by combining behavioural measures (reaction times, accuracy) with on-line monitoring of hemispheric activity using event-related potentials recorded over each hemisphere, and carefully-controlled presentation procedures using an eye-tracker linked to a fixation-contingent display.

Principal Findings

Event-related potentials 100–150 ms and 150–200 ms after stimulus onset indicated that stimuli in extrafoveal and foveal locations were projected unilaterally to the hemisphere contralateral to the presentation hemifield with no concurrent projection to the ipsilateral hemisphere. These effects were similar for words and pseudowords, suggesting this early division occurred before word recognition. Indeed, event-related potentials revealed differences between words and pseudowords 300–350 ms after stimulus onset, for foveal and extrafoveal locations, indicating that word recognition had now occurred. However, these later event-related potentials also revealed that the hemispheric division observed previously was no longer present for foveal locations but remained for extrafoveal locations. These findings closely matched the behavioural finding that foveal locations produced similar performance each side of fixation but extrafoveal locations produced left-right asymmetries.

Conclusions

These findings indicate that an initial division in unilateral hemispheric projections occurs in foveal vision away from the midline but is not apparent, or functional, when foveal word recognition actually occurs. In contrast, the division in unilateral hemispheric projections that occurs in extrafoveal locations is still apparent, and is functional, when extrafoveal word recognition takes place.  相似文献   

20.

Background

Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age.

Methodology/Principal Findings

We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus.

Conclusions/Significance

The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号