首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous efforts to evaluate the climate change impact of researchers have focused mainly on transport related impact of conference attendance, and infrastructure. Because these represent only a part of the activities involved in the science making process this short note presents the carbon footprint of a complete science making process of one specific case. Apart from presenting the total footprint, we evaluate the relative contribution of the different scientific activities, and quantify mitigating possibilities. The case PhD project had a carbon footprint of 21.5 t CO2-eq (2.69 t CO2-eq per peer-reviewed paper, 0.3 t CO2-eq per citation and 5.4 t CO2-eq per h-index unit at graduation) of which general mobility represents 75%. Conference attendance was responsible for 35% of the carbon footprint, whereas infrastructure related emissions showed to contribute 20% of the total impact. Videoconferencing could have reduced the climate change impact on this case PhD with up to 44%. Other emission reduction initiatives, such as using green electricity, reduction of energy consumption, and promoting commuting by bicycle, could have triggered a reduction of 14% in this case study. This note fits in the movement of academics and universities willing to be green. The study confirms that researchers’ mobility is the biggest contributor to his or her carbon footprint, but is not limited to conference attendance, showing the importance of considering all activities in the science making process.  相似文献   

2.
Green house gas emissions due to concrete manufacture   总被引:1,自引:0,他引:1  
Background, Aim and Scope The issues of environmental impacts of concrete have become important since many major infrastructure owners are now requiring environmentally sustainable design (ESD). The carbon dioxide (CO2) emissions are often used as a rating tool to compare the environmental impact of different construction materials in ESD. Currently, the designers are forced to make estimates of CO2 emissions for concrete in ESD based on conjecture rather than data. The aim of this study was to provide hard data collected from a number of quarries and concrete manufacturing plants so that accurate estimates can be made for concretes in ESD. Materials and Methods This paper presents the results of a research project aimed to quantify the CO2 emissions associated with the manufacture and placement of concrete. The life cycle inventory data was collected from two coarse aggregates quarries, one fine aggregates quarry, six concrete batching plants and several other sources. The results are presented in terms of equivalent CO2 emissions. The potential of fly ash and ground granulated blast furnace slag (GGBFS) to reduce the emissions due to concrete was investigated. A case study of a building is also presented. Results Portland cement was found to be the primary source of CO2 emissions generated by typical commercially produced concrete mixes, being responsible for 74% to 81% of total CO2 emissions. The next major source of CO2 emissions in concrete was found to be coarse aggregates, being responsible for 13% to 20% of total CO2 emissions. The majority contribution of CO2 emissions in coarse aggregates production was found to from electricity, typically about 80%. Blasting, excavation, hauling and transport comprise less than 25%. While the explosives had very high emission factors per unit mass, they contribute very small amounts (<0.25%) to coarse aggregate production, since only small quantities are used. Production of a tonne of fine aggregates was found to generate 30% to 40% of the emissions generated by the production of a tonne of coarse aggregates. Fine aggregates generate less equivalent CO2 since they are only graded, not crushed. Diesel and electricity were found to contribute almost equally to the CO2 emissions due to fine aggregates production. Emission contributions due to admixtures were found to be negligible. Concrete batching, transport and placement activities were all found to contribute very small amounts of CO2 to total concrete emissions. Discussion The CO2 emissions generated by typical normal strength concrete mixes using Portland cement as the only binder were found to range between 0.29 and 0.32 t CO2-e/m3. GGBFS was found to be capable of reducing concrete CO2 emissions by 22% in typical concrete mixes. Fly ash was found to be capable of reducing concrete CO2 emissions by 13% to 15% in typical concrete mixes. Conclusions The results presented are based on typical concrete manufacturing and placement methods in Australia. The data presented in this paper can be utilized to compare green house gas emissions due to concrete with those associated with alternative construction materials. Recommendations and Perspectives The various rating schemes used to compare alternative construction materials should use models such as the one presented in this paper, based on hard data so that reliable comparisons can be made. A case study is presented in this paper demonstrating how the results may be utilized. ESS-Submission Editor: Dr. Stefanie Hellweg (stefanie.hellweg@ifu.baug.ethz.ch)  相似文献   

3.
我国典型城市化石能源消费CO2排放及其影响因素比较研究   总被引:1,自引:0,他引:1  
郑颖  逯非  刘晶茹  王效科 《生态学报》2020,40(10):3315-3327
城市是化石能源消费和CO2排放的主要区域。分析典型城市化石能源消费CO2排放特征,明确不同城市CO2排放动态及主要影响因素的差异,是开展城市减排行动的重要科学依据。采用IPCC推荐方法及中国的排放参数核算11个典型城市2006—2015年间化石能源消费产生的CO2排放量。根据各城市经济发展和CO2排放特征将之分为四类:经济高度发达城市(北京、上海、广州)、高碳排放城市(重庆、乌鲁木齐、唐山)、低排放低增长城市(哈尔滨、呼和浩特和大庆)和低排放高增长城市(贵阳、合肥),并运用对数平均迪氏指数法(Logarithmic Mean Divisia Index,即LMDI分解法)对比分析了四类城市CO2排放量的影响因素。结果表明:(1)研究期内大部分城市CO2排放总量有所增加,仅北京和广州呈下降趋势,工业部门CO2排放在城市排放总量及其变化中占据主导地位;四类城市的人均CO2排放量表现出与排放总量相...  相似文献   

4.
The goal of this study was to calculate the average CO2 emissions for manufacturing three commodity plastics, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) in Japan. The CO2 emissions were calculated from cradle to gate, excluding the calcination processes after use. As the results, the followings were observed: 1) The gross CO2 emissions for the manufacture of plastics in Japan were 1.3, 1.4, and 1.7 kg-CO2/kg-PE, PP, and PVC, respectively. These mainly reflected the difference of CO2 emissions for the in-house electricity generation. 2) The CO2 emissions for the electricity used for manufacturing PVC were higher than that used for PE and PP, because additional electricity was required for the electrolysis to produce chlorine. The gross electricity consumption for manufacturing PVC was 1.3 kWh/kg-PVC, and the other plastics consumed 0.5 kWh/kg-Products. In addition, the effects of energy saving were studied using a projected gas-diffusion electrode for the electrolysis of salt on the reduction of CO2 emissions. It was estimated that the reduction in CO2 emissions was 7% compared with the present PVC manufacturing processes.  相似文献   

5.
Agriculture directly contributes about 10%–12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO2. Here, we employ a simple carbon cycle‐climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non‐CO2 emissions now and in future, and to CO2 from pasture conversions, without relying on GWPs. We find that direct livestock non‐CO2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non‐CO2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non‐CO2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal.  相似文献   

6.
城市能源利用碳足迹分析——以厦门市为例   总被引:3,自引:0,他引:3  
林剑艺  孟凡鑫  崔胜辉  于洋  赵胜男 《生态学报》2012,32(12):3782-3794
城市能源利用碳足迹分析综合考虑直接与间接碳排放,对于深度分析碳排放的本质过程、制定科学全面的碳减排计划具有重要意义。以厦门市为研究案例,应用碳足迹的混合分析方法,对厦门市2009年能源利用碳足迹进行了分析,除了包括传统研究中的城市能源终端利用产生的直接碳排放,还计算了跨界交通和城市主要消耗物质的内含能引起的间接碳排放。研究结果表明:(1)城市边界内的工业、交通、商业等部门的能源消耗产生的直接碳排放(即层次1和层次2)只占到总碳足迹的64%,而一直被忽略的跨界交通和城市主要消耗物质的内含能引起的间接碳排放(层次3)占到36%;(2)在直接碳排放中,工业部门的碳排放贡献率最大,占到直接碳排放的55%,其中化工行业带来的碳排放占到工业部门的25%;(3)在间接碳排放中,跨界交通引起的碳排放占间接碳排放的27%,其中长途道路运输贡献率最大,占跨界交通碳排放的38%;主要材料内含能碳排放占间接碳排的73%,其中燃料的内含能碳排放占总内含能的份额最大,达51%。;(4)从人均碳足迹角度比较,厦门市人均碳足迹和丹佛市的人均直接碳排(层次1+层次2)分别为5.74 t CO2e/人、18.9 t CO2e/人,包含3个层次的人均碳足迹分别为9.01 tCO2e/人、25.3 t CO2e/人,其中跨界交通引起的碳排放均占总碳足迹的10%左右,主要材料的内含能引起的碳排放分别占到总碳足迹的26%、15%;通过国内外典型城市不同层次碳足迹比较可见厦门还是相对低碳的,但有个显著的特点是主要消耗物质的内含碳排放比例较高,这在一定程度上说明了发展中国家城市消耗更多的基础材料,进一步证明了传统核算中忽略的第3层次碳排放核算与管理的重要性。  相似文献   

7.
By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.  相似文献   

8.
中国农业系统近40年温室气体排放核算   总被引:7,自引:0,他引:7  
范紫月  齐晓波  曾麟岚  吴锋 《生态学报》2022,42(23):9470-9482
基于排放因子法构建了包含种植业和牲畜养殖业的农业系统温室气体排放核算体系,系统核算了1980-2020年我国全国尺度上的农业系统温室气体排放总量和变化趋势,并在区县级尺度下对1980、2000、2011年的中国农业系统的温室气体排放量进行核算,对比不同阶段农业系统温室气体排放变化的时空异质性规律。研究发现:1980-2020年我国农业系统温室气体排放量呈波动增长趋势,增长了近46%。CH4是农业系统排放贡献最大的温室气体,占总排放量的47.33%。我国农业系统温室气体排放与不同地区农业生产方式有关,CH4排放量高的地区主要位于我国主要水稻产区以及旱地作物产区。CO2排放量高的地区主要位于东北、西北等地区以及华东地区。N2O排放量较高地区主要位于西北的主要畜牧养殖地区,以及我国农业经济发展水平高的中南部地区。研究有助于揭示我国农业温室气体排放的动态特征,现状规律,以及空间差异性特征,从农业减排角度为实现双碳目标提供科学参考。  相似文献   

9.
共享社会经济路径下中国2020—2100年碳排放预测研究   总被引:1,自引:0,他引:1  
张帆  徐宁  吴锋 《生态学报》2021,41(24):9691-9704
碳排放和减碳经济代价研究日益受到学术界和决策者的关注,中国政府做出的关于争取在2060年前实现碳中和的表态引起了国际社会的热议。在此背景下,开展中国未来长时间序列碳排放的情景预测具有切实意义。基于可拓展的随机性环境影响评估模型(STIRPAT)评估了人口、经济和受教育程度对碳排放的影响,对比历史数据并验证了碳排放预测模型的准确性,结合共享社会经济路径(SSPs)情景的设定和模型参数,预测了5种情景下中国2020年至2100年的碳排放轨迹及经济代价。结果表明:(1)考虑碳排放达峰目标的实现,SSP3情景是中国未来发展的最佳情景,在此情景下,中国有望提前三年实现碳排放达峰目标;(2) SSP3情景可使中国年度总碳排放量和人均碳排放量处于相对其他四种情景的最低值,但需要付出累积GDP下降5.49%至8.80%的代价;(3)为完成在2060年前实现碳中和的承诺,中国政府在未来的40年需面对409.36-467.42 Gt的碳中和量;(4)2020年中国的碳排放强度将会较2005年水平下降40.52%至41.39%,2030年碳排放强度将会较2005年水平下降59.64%至60.75%。5种情境中,SSP5情景是降低碳排放强度的最佳情景,可最大程度地超额实现碳排放强度目标。未来,受经济发展、人口增长等重要因素影响,中国政府减碳压力将进一步加大。后疫情时代,考虑到能源供应的减少和高科技产业的发展,碳排放社会成本的上升将为中国创造一个使能源系统脱碳的机遇。中国应在"十四五"期间继续提升能源利用效率、升级产业结构、提倡低碳消费、实施隐含碳战略,以尽快实现碳减排目标。  相似文献   

10.
Sheepfolds represent significant hot spot sources of greenhouse gases (GHG) in semi-arid grassland regions, such as Inner Mongolia in China. However, the annual contribution of sheepfolds to regional GHG emissions is still unknown. In order to quantify its annual contribution, we conducted measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at two sheepfold sites in the Baiyinxile administrative region of Inner Mongolia for 1 year, using static opaque chamber and gas chromatography methods. Our data show that, at an annual scale, both sheepfolds functioned as net sources of CO2, CH4 and N2O. Temperatures primarily determined the seasonal pattern of CO2 emission; 60–84% of the CO2 flux variation could be explained by temperature changes. High rates of net CH4 emissions from sheepfold soils were only observed when animals (sheep and goats) were present. While nitrous oxide emissions were also stimulated by the presence of animals, pulses of N2O emissions were also be related to rainfall and spring-thaw events. The total annual cumulative GHG emissions in CO2 equivalents (CO2: 1; CH4: 25; and N2O: 298) were quantified as 87.4?±?18.4 t ha?1 for the sheepfold that was used during the non-grazing period (i.e., winter sheepfold) and 136.7?±?15.9 t ha?1 used during the grazing period (i.e., summer sheepfold). Of the annual total GHG emissions, CH4 release accounted for approximately 1% of emissions, while CO2 and N2O emissions contributed to approximately 59% and 40%, respectively. The total GHG emission factor (CO2?+?CH4?+?N2O) per animal for the sheepfolds investigated in this study was 30.3 kg CO2 eq yr?1 head?1, which translates to 0.3, 18.8 and 11.2 kg CO2 eq yr?1 head?1 for CH4, CO2 and N2O, respectively. Sheepfolds accounted for approximately 34% of overall N2O emissions in the Baiyinxile administrative region, a typical steppe region within Inner Mongolia. The contribution of sheepfolds to the regional CO2 or CH4 exchange is marginal.  相似文献   

11.
Poplars and their hybrids are widely planted in both plantation forestry and agroforestry systems of the world. Along with the utilization and plantation management processes, a large amount of biomass residues are produced, but the relationship between biochar properties and soil CO2 emissions is largely unknown. Here, a laboratory incubation study was conducted to assess the effects of different biochars and their corresponding biomass residues on soil CO2 emissions during the 180 days of incubation. Poplar residue-derived biochars were larger in the surface area and total pore volume but lower in nutrients and pH values than the rice straw-derived biochar. Increasing pyrolysis temperature led to a decrease in the total nitrogen (TN) content of poplar leaf- and rice straw-derived biochars, but enhanced the TN in the poplar twig- and poplar bark-derived biochars. After 180-day incubation, the total cumulative CO2 emission decreased by 33.1%–73.8% in the biochar amendments compared to their corresponding biomass residue addition, whereas the biochars derived from poplar twig and bark residues had more positive effects on reducing soil CO2 emissions, but depended on the pyrolysis temperature. Correlation analysis showed a significant and positive correlation between the CO2 emissions and TN content of bio-based materials but the negative relationships to total carbon content and C/N ratio. Meanwhile the positive correlations of CO2 emissions to the surface area, t-plot micropore area, and volume of the biochars were detected. Our results suggest that application of poplar twig- and poplar bark-derived biochars has a great potential for mitigating global warming.  相似文献   

12.
We used a climate‐driven regression model to develop spatially resolved estimates of soil‐CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil‐to‐atmosphere CO2 fluxes. The mean annual global soil‐CO2 flux over this 15‐y period was estimated to be 80.4 (range 79.3–81.8) Pg C. Monthly variations in global soil‐CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil‐CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad‐leaved forests contributed more soil‐derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil‐CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil‐CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands and deserts), interannual variability in soil‐CO2 emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil‐CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 Pg C y?1 per °C. Although the distribution of precipitation influences seasonal and spatial patterns of soil‐CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.  相似文献   

13.
Emissions of greenhouse gases (GHG) are linked to global warming and adverse climate changes. Meeting the needs of the increasing number of people on the planet presents a challenge for reducing total GHG burden. A further challenge may be the size of the average person on the planet and the increasing number of people with excess body weight. We used data on GHG emissions from various sources and estimated that obesity is associated with ~20% greater GHG emissions compared with the normal‐weight state. On a global scale, obesity contributes to an extra GHG emissions of ~49 megatons per year of CO2 equivalent (CO2eq) from oxidative metabolism due to greater metabolic demands, ~361 megatons per year of CO2eq from food production processes due to increased food intake, and ~290 megatons per year of CO2eq from automobile and air transportation due to greater body weight. Therefore, the total impact of obesity may be extra emissions of ~700 megatons per year of CO2eq, which is about 1.6% of worldwide GHG emissions. Inasmuch as obesity is an important contributor to global GHG burden, strategies to reduce its prevalence should prioritize efforts to reduce GHG emissions. Accordingly, reducing obesity may have considerable benefits for both public health and the environment.  相似文献   

14.
With the most recent statistics available, a concrete emissions inventory is compiled for an input–output analysis to investigate the embodied CO2 emissions induced by fossil fuel combustion of Beijing economy in 2007. Results show that the total direct CO2 emissions amount to 9.45E + 07 t, within which 56.81% are released from coal combustion, 11.50% from coke combustion, 9.03% from kerosene combustion, 8.70% from natural gas and 6.40% from diesel, respectively. The average intensity of secondary industries (3.12 t/1E + 4 Yuan) is 0.65 times larger than that of primary industries (1.89 t/1E + 4 Yuan) and 1.58 times larger than that of tertiary industries (1.21 t/1E + 4 Yuan). The sector of Construction Industry contributes the largest share (21.98%) of CO2 emissions embodied in final demand for Beijing due to its considerable capital investment. Beijing is a net importer of embodied CO2 emissions with total import and export of 3.06E + 08 and 2.00E + 08 t, respectively. Results of this study provide a sound scientific database for effective policy making in Beijing to reduce CO2 emissions.  相似文献   

15.
Ruminants are central to the economic and nutritional life of much of sub-Saharan Africa, but cattle are now blamed for having a disproportionately large negative environmental impact through emissions of greenhouse gas (GHG). However, the mechanism underlying excessive emissions occurring only on some farms is imperfectly understood. Reliable estimates of emissions themselves are frequently lacking due to a paucity of reliable data. Employing individual animal records obtained at regular farm visits, this study quantified farm-level emission intensities (EIs) of greenhouse gases of smallholder farms in three counties in Western Kenya. CP was chosen as the functional unit to capture the outputs of both milk and meat. The results showed that milk is responsible for 80–85% of total CP output. Farm EI ranged widely from 20 to >1 000 kg CO2-eq/kg CP. Median EIs were 60 (Nandi), 71 (Bomet), and 90 (Nyando) kg CO2-eq/kg. Although median EIs referenced to milk alone (2.3 kg CO2-eq/kg milk) were almost twice that reported for Europe, up to 50% of farms had EIs comparable to the mean Pan-European EIs. Enteric methane (CH4) contributed >95% of emissions and manure ~4%, with negligible emissions attributed to inputs to the production system. Collecting data from individual animals on smallholder farms enabled the demonstration of extremely heterogeneous EI status among similar geographical spaces and provides clear indicators on how low EI status may be achieved in these environments. Contrary to common belief, our data show that industrial-style intensification is not required to achieve low EI. Enteric CH4 production overwhelmingly drives farm emissions in these systems and as this is strongly collinear with nutrition and intake, an effort will be required to achieve an “efficient frontier” between feed intake, productivity, and GHG emissions.  相似文献   

16.
Methane emissions from wetland soils are generally a positive function ofplant size and primary productivity, and may be expected to increase dueto enhanced rates of plant growth in a future atmosphere of elevatedCO2. We performed two experiments with Orontium aquaticum, acommon emergent aquatic macrophyte in temperate and sub-tropical wetlands, todetermine if enhanced rates of photosynthesis in elevated CO2atmospheres would increase CH4 emissions from wetland soils.O. aquaticum was grown from seed in soil cores under ambient and elevated(ca. 2-times ambient) concentrations of CO2 in an initialglasshouse study lasting 3 months and then a growth chamber study lasting 6months. Photosynthetic rates were 54 to 71% higher underelevated CO2 than ambient CO2, but plantbiomass was not significantly different at the end of the experiment. Ineach case, CH4 emissions were higher under elevated thanambient CO2 levels after 2 to 4 months of treatment, suggestinga close coupling between photosynthesis and methanogenesis in our plant-soilsystem. Methane emissions in the growth chamber study increased by 136%. We observed a significant decrease in transpirationrates under elevated CO2 in the growth chamber study, andspeculate that elevated CO2 may also stimulate CH4 emissions by increasing the extent and duration offlooding in some wetland ecosystems. Elevated CO2 maydramatically increase CH4 emissions from wetlands, a sourcethat currently accounts for 40% of global emissions.  相似文献   

17.
In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This regional survey summarizes soil GHG emissions from nine maize production systems evaluating different levels of corn stover removal under conventional or conservation tillage management across the US Corn Belt. Cumulative growing season soil emissions of CO2, N2O, and/or CH4 were measured for 2–5 years (2008–2012) at these various sites using a standardized static vented chamber technique as part of the USDA-ARS’s Resilient Economic Agricultural Practices (REAP) regional partnership. Cumulative soil GHG emissions during the growing season varied widely across sites, by management, and by year. Overall, corn stover removal decreased soil total CO2 and N2O emissions by -4 and -7 %, respectively, relative to no removal. No management treatments affected soil CH4 fluxes. When aggregated to total GHG emissions (Mg CO2?eq ha?1) across all sites and years, corn stover removal decreased growing season soil emissions by ?5?±?1 % (mean?±?se) and ranged from -36 % to 54 % (n?=?50). Lower GHG emissions in stover removal treatments were attributed to decreased C and N inputs into soils, as well as possible microclimatic differences associated with changes in soil cover. High levels of spatial and temporal variabilities in direct GHG emissions highlighted the importance of site-specific management and environmental conditions on the dynamics of GHG emissions from agricultural soils.  相似文献   

18.
Nonmethane volatile organic compounds (VOCs) are reactive, low molecular weight gases that can have significant effects on soil and atmospheric processes. Research into biogenic VOC sources has primarily focused on plant emissions, with few studies on VOC emissions from decomposing plant litter, another potentially important source. Likewise, although there have been numerous studies examining how anthropogenic increases in nitrogen (N) availability can influence litter decomposition rates, we do not know how VOC emissions may be affected. In this study, we measured the relative contribution of VOCs to the total carbon (C) emitted from decomposing litter and how N amendments affected VOC emissions. We incubated decomposing litter from 12 plant species over 125 days, measuring both CO2 and VOC emissions throughout the incubation. We found that VOCs represented a large portion of C emissions from a number of the litter types with C emissions as VOCs ranging from 0% to 88% of C emissions as CO2. Methanol was the dominant VOC emitted, accounting for 28–99% of total VOC emissions over the incubation period. N additions increased CO2 production in 7 of the 12 litter types by 5–180%. In contrast, N additions decreased VOC emissions in 8 of the 12 litter types, reducing net VOC emissions to near zero. The decrease in VOC emissions was occasionally large enough to account for the increased CO2 emissions on a per unit C basis, suggesting that N additions may not necessarily accelerate C loss from decomposing litter but rather just switch the form of C emitted. Together these results suggest that, for certain litter types, failure to account for VOC emissions may lead to an underestimation of C losses from litter decomposition and an overestimation of the effects of N additions on rates of litter decomposition.  相似文献   

19.

Purpose

This study seeks to answer the question, “Will the Million Trees LA (Million Trees Los Angeles, MTLA) program be a carbon dioxide (CO2) sink or source?” Because there has never been a full accounting of CO2 emissions, it is unclear if urban tree planting initiatives (TPIs) are likely to be effective means for reaching local reduction targets.

Methods

Using surveys, interviews, field sampling, and computer simulation of tree growth and survival over a 40-year time period, we developed the first process-based life cycle inventory of CO2 for a large TPI. CO2 emissions and reductions from storage and avoided emissions from energy savings were simulated for 91,786 trees planted from 2006 to 2010, of which only 30,813 (33.6 %) were estimated to survive.

Results and discussion

The MTLA program was estimated to release 17,048 and 66,360 t of fossil and biogenic CO2 over the 40-year period, respectively. The total amount emitted (83,408 t) was slightly more than the ?77,942 t CO2 that trees were projected to store in their biomass. The MTLA program will be a CO2 sink if projected 40-year-avoided fossil fuel CO2 emissions from energy savings (?101,679 t) and biopower (?1,939 t) are realized. The largest sources of CO2 emissions were mulch decomposition (65.1 %), wood combustion (14.5 %), and irrigation water (9.7 %).

Conclusions

Although trees planted by the MTLA program are likely to be a net CO2 sink, there is ample opportunity to reduce emissions. Examples of these opportunities include selecting drought-tolerant trees and utilizing wood residue to generate electricity rather than producing mulch.  相似文献   

20.
Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号