首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glucose homeostasis is controlled by insulin in part through the stimulation of glucose transport in muscle and fat cells. This insulin signaling pathway requires phosphatidylinositol (PI) 3-kinase-mediated 3'-polyphosphoinositide generation and activation of Akt/protein kinase B. Previous experiments using dominant negative constructs and gene ablation in mice suggested that two phosphoinositide phosphatases, SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulate this insulin signaling pathway. Here we directly tested this hypothesis by selectively inhibiting the expression of SHIP2 or PTEN in intact cultured 3T3-L1 adipocytes through the use of short interfering RNA (siRNA). Attenuation of PTEN expression by RNAi markedly enhanced insulin-stimulated Akt and glycogen synthase kinase 3alpha (GSK-3alpha) phosphorylation, as well as deoxyglucose transport in 3T3-L1 adipocytes. In contrast, depletion of SHIP2 protein by about 90% surprisingly failed to modulate these insulin-regulated events under identical assay conditions. In control studies, no diminution of insulin signaling to the mitogen-activated protein kinases Erk1 and Erk2 was observed when either PTEN or SHIP2 were depleted. Taken together, these results demonstrate that endogenous PTEN functions as a suppressor of insulin signaling to glucose transport through the PI 3-kinase pathway in cultured 3T3-L1 adipocytes.  相似文献   

3.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway has inherent oncogenic potential. It is up-regulated in diverse human cancers by either a gain of function in PI3K itself or in its downstream target Akt or by a loss of function in the negative regulator PTEN. However, the complete consequences of this up-regulation are not known. Here we show that insulin and epidermal growth factor or an inactivating mutation in the tumor suppressor PTEN specifically increase the protein levels of hypoxia-inducible factor (HIF) 1alpha but not of HIF-1beta in human cancer cell lines. This specific elevation of HIF-1alpha protein expression requires PI3K signaling. In the prostate carcinoma-derived cell lines PC-3 and DU145, insulin- and epidermal growth factor-induced expression of HIF-1alpha was inhibited by the PI3K-specific inhibitors LY294002 and wortmannin in a dose-dependent manner. HIF-1beta expression was not affected by these inhibitors. Introduction of wild-type PTEN into the PTEN-negative PC-3 cell line specifically inhibited the expression of HIF-1alpha but not that of HIF-1beta. In contrast to the HIF-1alpha protein, the level of HIF-1alpha mRNA was not significantly affected by PI3K signaling. Vascular endothelial growth factor reporter gene activity was induced by insulin in PC-3 cells and was inhibited by the PI3K inhibitor LY294002 and by the coexpression of a HIF-1 dominant negative construct. Vascular endothelial growth factor reporter gene activity was also inhibited by expression of a dominant negative PI3K construct and by the tumor suppressor PTEN.  相似文献   

4.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   

5.
6.
PTEN is a tumor suppressor that antagonizes phosphatidylinositol-3 kinase (PI3K) by dephosphorylating the D3 position of phosphatidylinositol (3,4,5)-triphosphate (PtdIns-3,4,5-P3). Given the importance of PTEN in regulating PtdIns-3,4,5-P3 levels, we used Affymetrix GeneChip arrays to identify genes regulated by PTEN. PTEN expression rapidly reduced the activity of Akt, which was followed by a G(1) arrest and eventually apoptosis. The gene encoding insulin receptor substrate 2 (IRS-2), a mediator of insulin signaling, was found to be the most induced gene at all time points. A PI3K-specific inhibitor, LY294002, also upregulated IRS-2, providing evidence that it was the suppression of the PI3K pathway that was responsible for the message upregulation. In addition, PTEN, LY294002, and rapamycin, an inhibitor of mammalian target of rapamycin, caused a reduction in the molecular weight of IRS-2 and an increase in the association of IRS-2 with PI3K. Apparently, PTEN inhibits a negative regulator of IRS-2 to upregulate the IRS-2-PI3K interaction. These studies suggest that PtdIns-3,4,5-P3 levels regulate the specific activity and amount of IRS-2 available for insulin signaling.  相似文献   

7.
8.
Insulin is critical for controlling energy functions including glucose and lipid metabolism. Insulin resistance seems to interact with hepatitis C promoting fibrosis progression and impairing sustained virological response to peginterferon and ribavirin. The main aim was to elucidate the direct effect of hepatitis C virus (HCV) infection on insulin signaling both in vitro analyzing gene expression and protein abundance. Huh7.5 cells and JFH-1 viral particles were used for in vitro studies. Experiments were conducted by triplicate in control cells and infected cells. Genes and proteins involved in insulin signaling pathway were modified by HCV infection. Moreover, metformin treatment increased gene expression of PI3K, IRS1, MAP3K, AKT and PTEN more than >1.5 fold. PTP1B, encoding a tyrosin phosphatase, was found highly induced (>3 fold) in infected cells treated with metformin. However, PTP1B protein expression was reduced in metformin treated cells after JFH1 infection. Other proteins related to insulin pathway like Akt, PTEN and phosphorylated MTOR were also found down-regulated. Viral replication was inhibited in vitro by metformin. A strong effect of HCV infection on insulin pathway-related gene and protein expression was found in vitro. These results could lead to the identification of new therapeutic targets in HCV infection and its co-morbidities.  相似文献   

9.
Diabetes Mellitus is a chronic metabolic disease marked by altered glucose homeostasis and insulin resistance. The phosphatase PTEN antagonizes the insulin-induced-PI3K-driven cascade that normally leads to GLUT4 membrane translocation. This study investigates the effect of Phenylbutyric Acid (PBA), a chemical chaperone and a potential mediator of PTEN activity, on glucose uptake in differentiated 3T3-L1 adipocytes. Adipocyte differentiation status was quantified by Oil Red O staining and the expression of AP2. Baseline and insulin-induced adipocyte glucose uptake were assayed with and without PBA treatment. Expression of GLUT1, GLUT4, PIP3, pAkt, pPTEN, and PARK-7 was examined by western blot. Plasma membrane expression of GLUT4 was determined using immunofluorescence. Leptin and adiponectin secretion was measure by enzyme-linked immunosorbent assay. PBA treatment, alone or with insulin induction, significantly increased glucose uptake in 3T3-L1 adipocytes. PBA significantly increased GLUT1 but not GLUT4 total protein expression. However, a significant increase in membrane GLUT4 protein translocation was observed. The expression of PIP3 and pAkt increased indicating enhanced PI3k pathway activity. There was a significant decrease in PTEN activity as evident by a rise in the phosphorylated form of this protein. PARK7 protein expression increased with PBA. Treating differentiated adipocytes with PBA did not alter their differentiation status, but decreased the leptin to adiponectin ratio. Conclusion: this study showed that PBA enhances adipocyte glucose uptake potentially through its effect on glucose transporter expression and/or trafficking via the PI3K signaling pathway; suggesting PBA as a possible candidate for the ancillary management of diabetes.  相似文献   

10.
Chronic growth hormone (GH) therapy has been shown to cause insulin resistance, but the mechanism remains unknown. PTEN, a tumor suppressor gene, is a major negative regulator of insulin signaling. In this study, we explored the effect of chronic GH on insulin signaling in the context of PTEN function. Balb/c healthy mice were given recombinant human or bovine GH intraperitoneally for 3 weeks. We found that phosphorylation of Akt was significantly decreased in chronic GH group and the expression of PTEN was significantly increased. We further examined this effect in the streptozotocin-induced Type I diabetic mouse model, in which endogenous insulin secretion was disrupted. Insulin/PI3K/Akt signaling was impaired. However, different from the observation in healthy mice, the expression of PTEN did not increase. Similarly, PTEN expression did not significantly increase in chronic GH-treated mice with hypoinsulinemia induced by prolonged fasting. We conducted in-vitro experiments in HepG2 cells to validate our in-vivo findings. Long-term exposure to GH caused similar resistance of insulin/PI3K/Akt signaling in HepG2 cells; and over-expression of PTEN enhanced the impairment of insulin signaling. On the other hand, disabling the PTEN gene by transfecting the mutant PTEN construct C124S or siPTEN, disrupted the chronic GH induced insulin resistance. Our data demonstrate that PTEN plays an important role in chronic-GH-induced insulin resistance. These findings may have implication in other pathological insulin resistance.  相似文献   

11.
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.  相似文献   

12.
Prenatal alcohol exposure (EtOH) results in insulin resistance in rats of both sexes with increased expression of hepatic gluconeogenic genes and glucose production. To investigate whether hepatic insulin signaling is defective, we studied 3-mo-old female offspring of dams that were given EtOH during pregnancy compared with those from pair-fed and control dams. We performed an intraperitoneal pyruvate tolerance test, determined the phosphorylation status of hepatic phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCzeta before and after intravenous insulin bolus, and measured mRNA and in vivo acetylation of TRB3 (tribbles 3) and PTEN (phosphatase and tensin homolog deleted on chromosome ten) as well as the expression of the histone acetylase (HAT) PCAF (p300/CREB-binding protein-associated factor), histone deacetylase-1 (HDAC1), and HAT and HDAC activities. In EtOH compared with pair-fed and control offspring, basal and pyruvate-induced blood glucose was increased, insulin-induced PDK1, Akt, and PKCzeta phosphorylation was reduced, and expression of PTEN and TRB3 was increased while their acetylation status was decreased in association with increased HDAC and decreased HAT activities. Thus female adult rats prenatally exposed to EtOH have increased gluconeogenesis, reduced insulin signaling, and increased PTEN and TRB3 expression in the liver. In addition, PTEN and TRB3 are hypoacetylated, which can contribute to Akt-inhibiting activity. These results suggest that hepatic insulin resistance in rats prenatally exposed to EtOH is explained, at least in part, by increased PTEN and TRB3 activity due to both increased gene expression and reduced acetylation.  相似文献   

13.
14.
Phosphatase and tensin homolog (PTEN) is an important tumor-suppressor gene which constitutes an important PI3K/Akt pathway by regulating the signaling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth has been gaining increasing attention. However, the role of PTEN in regulating apoptosis of canine mammary tumors cells still needs further investigation. In this experiment, the effect of PTEN on proliferation and apoptosis in canine mammary tumors (CMT) cells was analyzed. As a result, gene and protein expression levels of apoptosis-related genes were detected. Eukaryotic expression vector pcDNA3.1+-PTEN were successfully constructed and stably transferred into canine CMT cells after geneticin (G418) selection. After pcDNA3.1+-PTEN transfection, compared with control group, the cells proliferation was inhibited and the cell apoptosis was increased in CMT cells. The expression of p-Akt was decreased and the apoptosis-related genes, such as caspase-3, caspase-9, and Bax, were increased. These data serve to demonstrate the function of PTEN on apoptosis and gene regulatory in PI3K/Akt pathway in CMT cells. Collectively, our data link the tumor-suppressor activities of PTEN to the machinery controlling cell cycle through the modulation of signaling molecules whose signal target is the functional inactivation of the apoptosis gene product.  相似文献   

15.
The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most altered in cancer, leading to a range of cellular responses including enhanced proliferation, survival, and metabolism, and is thus an attractive target for anticancer drug development. Stimulation of the PI3K pathway can be initiated by alterations at different levels of the signaling cascade including growth factor receptor activation, as well as mutations in PIK3CA, PTEN, and AKT genes frequently found in a broad range of cancers. Given its role in glucose metabolism, we investigated the utility of [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG PET) as a pharmacodynamic biomarker of PI3K pathway-induced glucose metabolism. PTEN deletion in human colon carcinoma cells led to constitutive AKT activation but did not confer a phenotype of increased cell proliferation or glucose metabolism advantage in vivo relative to isogenic tumors derived from cells with a wild-type allele. This was not due to the activation context, that is, phosphatase activity, per se because PIK3CA activation in xenografts derived from the same lineage failed to increase glucose metabolism. Acute inhibition of PI3K activity by LY294002, and hence decreased activated AKT expression, led to a significant reduction in tumor [(18)F]FDG uptake that could be explained at least in part by decreased membrane glucose transporter 1 expression. The pharmacodynamic effect was again independent of PTEN status. In conclusion, [(18)F]FDG PET is a promising pharmacodynamic biomarker of PI3K pathway inhibition; however, its utility to detect glucose metabolism is not directly linked to the magnitude of activated AKT protein expression.  相似文献   

16.
PI3K/Akt plays a critical role in prostate cancer cell growth and survival. Recent studies have shown that the effect of PI3K/Akt in prostate cells is mediated through androgen signaling. The PI3K inhibitor, LY294002, and a tumor suppressor, PTEN, negatively regulate the PI3K/Akt pathway and repress AR activity. However, the molecular mechanisms whereby PI3K/Akt and PTEN regulate the androgen pathway are currently unclear. Here, we demonstrate that blocking the PI3K/Akt pathway reduces the expression of an endogenous AR target gene. Moreover, we show that the repression of AR activity by LY294002 is mediated through phosphorylation and inactivation of GSK3beta, a downstream substrate of PI3K/Akt, which results in the nuclear accumulation of beta-catenin. Given the recent evidence that beta-catenin acts as a coactivator of AR, our findings suggest a novel mechanism by which PI3K/Akt modulates androgen signaling. In a PTEN-null prostate cancer cell line, we show that PTEN expression reduces beta-catenin-mediated augmentation of AR transactivation. Using the mutants of beta-catenin, we further demonstrate that the repressive effect of PTEN is mediated by a GSK3beta-regulated degradation of beta-catenin. Our results delineate a novel link among the PI3K, wnt, and androgen pathways and provide fresh insights into the mechanisms of prostate tumor development and progression.  相似文献   

17.
Intervertebral disc degeneration (IDD) is induced by multiple factors including increased apoptosis, decreased survival, and reduced extracellular matrix (ECM) synthesis in the nucleus pulposus (NP) cells. The tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the only known lipid phosphatase counteracting the PI3K/AKT pathway. Loss of PTEN leads to activated PI3K/AKT signaling, which plays a key role in a variety of cancers. However, the role of PTEN/PI3K/AKT signaling nexus in IDD remains unknown. Here, we report that PTEN is overexpressed in degenerative NP, which correlates with inactivated AKT. Using the PTEN knockdown approach by lentivirus‐mediated short interfering RNA gene transfer technique, we report that PTEN decreases survival but induces apoptosis and senescence of NP cells. PTEN also inhibits expression and production of ECM components including collagen II, aggrecan, and proteoglycan. Furthermore, PTEN modulates the expression of ECM regulatory molecules SOX‐9 and matrix metalloproteinase‐3 (MMP‐3). Using small‐molecule AKT inhibitor GDC‐0068, we confirm that PTEN regulates NP cell behaviors through its direct targeting of PI3K/AKT. These findings demonstrate for the first time that PTEN/PI3K/AKT signaling axis plays an important role in the pathogenesis of IDD. Targeting PTEN using gene therapy may represent a promising therapeutic approach against disc degenerative diseases.  相似文献   

18.
19.
NYGGF4, an obesity-related gene, is proposed to be involved in the development of insulin resistance. Skeletal muscle is a primary target organ for insulin and NYGGF4 showed a relatively high expression level in skeletal muscle. Therefore, this study aimed to explore the effect of NYGGF4 on insulin sensitivity of skeletal muscle cells. RNA interference (RNAi) was adopted to silence NYGGF4 expression in mice C2C12 skeletal myocytes. A remarkably increased insulin-stimulated glucose uptake and GLUT4 translocation was observed in NYGGF4 silencing C2C12 cells. Importantly, the enhanced glucose uptake induced by NYGGF4 silencing could be abrogated by the PI3K inhibitor LY294002. In addition, the crucial molecules involved in PI3K insulin signaling pathway were detected by western blotting. The results showed that NYGGF4 knockdown dramatically activate the insulin-stimulated phosphorylation of IRS-1 and AKT. Taken together, these data demonstrate that NYGGF4 knockdown increases glucose transport in myocytes by activation of the IRS-1/PI3K/AKT insulin pathway.  相似文献   

20.
Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells. An aberrant increase in FAK tyrosine phosphorylation was observed in insulin resistant Neuro-2a (N2A) cells. Downregulation of FAK expression utilizing RNAi mediated gene silencing in insulin resistant N2A cells completely ameliorated the impaired insulin/PI3K signaling and glucose uptake. FAK silencing in primary cortical neurons also showed marked enhancement in glucose uptake. The results thus suggest that in neurons FAK acts as a negative regulator of insulin/PI3K signaling. Interestingly, the available literature also demonstrates cell-type specific functions of FAK in neurons. FAK that is well known for its cell survival effects has been shown to be involved in neurodegeneration. Along with these previous reports, present findings highlight a novel and critical role of FAK in neurons. Moreover, as this implicates differential regulation of insulin/PI3K pathway by FAK in peripheral tissues and neuronal cells, it strongly suggests precaution while considering FAK modulators as possible therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号