首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosome assembly factors guide the complex process by which ribosomal proteins and the ribosomal RNAs form a functional ribosome. However, the assembly of plant plastid ribosomes is poorly understood. In the present study, we discovered a maize (Zea mays) plastid ribosome assembly factor based on our characterization of the embryo defective 15 (emb15) mutant. Loss of function of Emb15 retards embryo development at an early stage, but does not substantially affect the endosperm, and causes an albino phenotype in other genetic backgrounds. EMB15 localizes to plastids and possesses a ribosome maturation factor M (RimM) domain in the N-terminus and a predicted UDP-GlcNAc pyrophosphorylase domain in the C-terminus. The EMB15 RimM domain originated in bacteria and the UDP-GlcNAc pyrophosphorylase domain originated in fungi; these two domains came together in the ancestor of land plants during evolution. The N-terminus of EMB15 complemented the growth defect of an Escherichia coli strain with a RimM deletion and rescued the albino phenotype of emb15 homozygous mutants. The RimM domain mediates the interaction between EMB15 and the plastid ribosomal protein PRPS19. Plastid 16S rRNA maturation is also significantly impaired in emb15. These observations suggest that EMB15 functions in maize seed development as a plastid ribosome assembly factor, and the C-terminal domain is not important under normal conditions.  相似文献   

2.
Embryo‐specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12–GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.  相似文献   

3.
4.
The embryo defective (emb) mutants in maize genetically define a unique class of loci that is required for embryogenesis but not endosperm development, allowing dissection of two developmental processes of seed formation. Through characterization of the emb14 mutant, we report here that Emb14 gene encodes a circular permuted, YqeH class GTPase protein that likely functions in 30S ribosome formation in plastids. Loss of Emb14 function in the null mutant arrests embryogenesis at the early transition stage. Emb14 was cloned by transposon tagging and was confirmed by analysis of four alleles. Subcellular localization indicated that the EMB14 is targeted to chloroplasts. Recombinant EMB14 is shown to hydrolyze GTP in vitro (Km = 2.42 ± 0.3 μm ). Emb14 was constitutively expressed in all tissues examined and high level of expression was found in transition stage embryos. Comparison of emb14 and WT indicated that loss of EMB14 function severely impairs accumulation of 16S rRNA and several plastid encoded ribosomal genes. We show that an EMB14 transgene complements the pale green, slow growth phenotype conditioned by mutations in AtNOA1, a closely related YqeH GTPase of Arabidopsis. Taken together, we propose that the EMB14/AtNOA1/YqeH class GTPases function in assembly of the 30S subunit of the chloroplast ribosome, and that this function is essential to embryogenesis in plants.  相似文献   

5.
Chloroplast biogenesis is tightly linked with embryogenesis and seedling development. A growing body of work has been done on the molecular mechanisms underlying chloroplast development; however, the molecular components involved in chloroplast biogenesis during embryogenesis remain largely uncharacterized. In this paper, we show that an Arabidopsis mutant carrying a T‐DNA insertion in a gene encoding a multiple membrane occupation and recognition nexus (MORN)‐containing protein exhibits severe defects during embryogenesis, producing abnormal embryos and thereby leading to a lethality of young seedlings. Genetic and microscopic studies reveal that the mutation is allelic to a previously designated Arabidopsis embryo‐defective 1211 mutant (emb1211). The emb1211 +/? mutant plants produce approximately 25% of white‐colored ovules with abnormal embryos since late globular stage when primary chloroplast biogenesis takes place, while the wild‐type plants produce all green ovules. Transmission electron microscopic analysis reveals the absence of normal chloroplast development, both in the mutant embryos and in the mutant seedlings, that contributes to the albinism. The EMB1211 gene is preferentially expressed in developing embryos as revealed in the EMB1211::GUS transgenic plants. Taken together, the data indicate that EMB1211 has an important role during embryogenesis and chloroplast biogenesis in Arabidopsis.  相似文献   

6.
7.
Summary In order to understand and limit albino plantlet formation during pollen embryogenesis in barley (Hordeum vulgare L. cv. Igri), plastid feature was followed during pollen embryogenesis under two anther culture conditions and compared to plastid development in the zygotic embryo. The first condition was characterized by cold pretreatment and maltose in the induction medium. Both embryos and calli were then obtained. During pollen embryo development, up to 30% of plastids had abnormal features. Disruptions mainly affected the plastid size, the feature of plastid envelopes, thylakoid and granum organization, as well as starch accumulation. In pollen calli, superficial cells had meristematic features. Up to 50% of plastids exhibited the above mentioned abnormalities. Internal cells were highly vacuolated with amyloplast-like plastids; envelopes had normal features but no internal membrane was detected. Pollen embryo-derived plantlets had a green-to-albino ratio (G/A) being equal to 1.0, whereas calli-derived embryos only formed albino plantlets. The second condition was characterized by mannitol pretreatment and the presence of both maltose and mannitol in the induction medium. No callus was formed but most of microspore-derived structures developed haploid embryos and then the green plantlets (200 plantlets per 100 responding anthers, G/A=9.4). In this case, plastid development in zygotic and pollen embryos were similar and almost no albino plantlets were formed.  相似文献   

8.
9.
Plastid-targeted proteins pass through the cytosol as unfolded precursors. If proteins accumulate in the cytosol, they can form nonspecific aggregates that cause severe cellular damage. Here, we demonstrate that high levels of plastid precursors are degraded through the ubiquitin-proteasome system (UPS) in Arabidopsis thaliana cells. The cytosolic heat shock protein cognate 70-4 (Hsc70-4) and E3 ligase carboxy terminus of Hsc70-interacting protein (CHIP) were highly induced in plastid protein import2 plants, which had a T-DNA insertion at Toc159 and showed an albino phenotype and a severe defect in protein import into chloroplasts. Hsc70-4 and CHIP together mediated plastid precursor degradation when import-defective chloroplast-targeted reporter proteins were transiently expressed in protoplasts. Hsc70-4 recognized specific sequence motifs in transit peptides and thereby led to precursor degradation through the UPS. CHIP, which interacted with Hsc70-4, functioned as an E3 ligase in the Hsc70-4–mediated protein degradation. The physiological role of Hsc70-4 was confirmed by analyzing Hsc70-4 RNA interfernce plants in an hsc70-1 mutant background. Plants with lower Hsc70 levels exhibited abnormal embryogenesis, resulting in defective seedlings that displayed high levels of reactive oxygen species and monoubiquitinated Lhcb4 precursors. We propose that Hsc70-4 and CHIP mediate plastid-destined precursor degradation to prevent cytosolic precursor accumulation and thereby play a critical role in embryogenesis.  相似文献   

10.
In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.  相似文献   

11.
12.
We identified the Arabidopsis (Arabidopsis thaliana) tanmei/emb2757 (tan) mutation that causes defects in both embryo and seedling development. tan mutant embryos share many characteristics with the leafy cotyledon (lec) class of mutants in that they accumulate anthocyanin, are intolerant of desiccation, form trichomes on cotyledons, and have reduced accumulation of storage proteins and lipids. Thus, TAN functions both in the early and late phases of embryo development. Moreover, the TAN and LEC genes interact synergistically, suggesting that they do not act in series in the same genetic pathway but, rather, that they have overlapping roles during embryogenesis. tan mutants die as embryos, but immature mutant seeds can be germinated in culture. However, tan mutant seedlings are defective in shoot and root development, their hypocotyls fail to elongate in the dark, and they die as seedlings. We isolated the TAN gene and showed that the predicted polypeptide has seven WD repeat motifs, suggesting that TAN forms complexes with other proteins. Together, these results suggest that TAN interacts with other proteins to control many aspects of embryo development.  相似文献   

13.
14.
15.
In ovulo embryo culture followed by culture of excised immatureembryos produced interspecific hybrids between Trifolium repensL. (white clover) and autotetraploid T. hybridum L. (alsikeclover). Ovules containing hybrid embryos were excised 12–14 dafter pollination and cultured on Nitsch (1951) medium supplementedwith 15% young cucumber juice for 5–6 d. Embryos weresubsequently excised and transferred to hormone-free EG medium,a medium suitable for the culture of immature embryos. A total of 118 hybrid seedlings were obtained from 1978 reciprocalpollinations. All seedlings produced showed various chlorophylldeficiencies, either totally albino or albino with green sectors.Transmission electron microscope studies were carried out toinvestigate plastid development in embryos and seedlings. Someembryos produced only callus. Plants were regenerated from sevencalli. Two semi-albino plants survived transfer to soil, andone plant produced flowers. Backcrosses to T. repens producedone green plant. Hybridity is supported by analysis of morphological characters,karyotype and the gel electrophoretic separation of leaf isozymes. Pollen irradiated with 40 Gy of gamma rays was also used forpollinations. Results indicate that in certain cases ionizingradiation might be useful in overcoming hybrid inviability. Trifolium repens, Trifolium hybridum, clover, interspecific hybridization, in ovulo embryo culture, irradiation  相似文献   

16.
Arabidopsis cell growth defect factor-1 (Cdf1 in yeast, At5g23040) was originally isolated as a cell growth suppressor of yeast from genetic screening. To investigate the in vivo role of Cdf1 in plants, a T-DNA insertion line was analyzed. A homozygous T-DNA insertion mutant (cdf1/cdf1) was embryo lethal and showed arrested embryogenesis at the globular stage. The Cdf1 protein, when fused with green fluorescent protein, was localized to the plastid in stomatal guard cells and mesophyll cells. A promoter-β-glucuronidase assay found expression of Cdf1 in the early heart stage of embryogenesis, suggesting that Cdf1 was essential for Arabidopsis embryogenesis during the transition of the embryo from the globular to heart stage.  相似文献   

17.
In Arabidopsis thaliana, mitochondrial-localized heat-shock cognate protein 70-1 (mtHSC70-1) plays an important role in vegetativegrowth. However, whether mtHSC70-1 affects reproductive growth remains unknown. Here, we found that the mtHSC70-1 gene was expressed in the provascular cells of the embryo proper from the early heart stage onward during embryogenesis. Phenotypic analyses of mthsc70-1 mutants revealed that mtHSC70 deficiency leads to defective embryo development and that this effect is mediated by auxin. In addition to a dwarf phenotype, the mthsc70-1 mutant displayed defects in flower morphology, anther development, and embryogenesis. At early developmental stages, the mthsc70-1 embryos exhibited abnormal cell divisions in both embryo proper and suspensor cells. From heart stage onward, they displayed an abnormal shape such as with no or very small cotyledon protrusions, had aberrant number of cotyledons, or were twisted. These embryo defects were associated with reduced or ectopic expression of auxin responsive reporter DR5rev:GFP. Consistently, the expression of auxin biosynthesis and polar auxin transport genes were markedly altered in mthsc70-1. On the other hand, mitochondrial retrograde regulation (MRR) was enhanced in mthsc70-1. Treatment of wild-type plants with an inhibitor that activates mitochondrial retrograde signaling reduced the expression level of auxin biosynthesis and polar auxin transport genes and induced phenotypes similar to those of mthsc70-1. Taken together, our data reveal that loss of function of mtHSC70-1 induces MRR, which inhibits auxin biosynthesis and polar auxin transport, leading to abnormal auxin gradients and defective embryo development.

mtHSC70-1 dysfunction induces mitochondrial retrograde regulation, which inhibits auxin biosynthesis and polar auxin transport, leading to abnormal auxin gradients and defective embryo development.  相似文献   

18.
19.
Plant growth and development rely on sugar transport between source and sink cells and between different organelles. The plastid-localized sugar transporter GLUCOSE-6-PHOSPHATE TRANSLOCATER1 (GPT1) is an essential gene in Arabidopsis (Arabidopsis thaliana). Using a partially rescued gpt1 mutant and cell-specific RNAi suppression of GPT1, we demonstrated that GPT1 is essential to the function of the embryo suspensor and the development of the embryo. GPT1 showed a dynamic expression/accumulation pattern during embryogenesis. Inhibition of GPT1 accumulation via RNAi using a suspensor-specific promoter resulted in embryos and seedlings with defects similar to auxin mutants. Loss of function of GPT1 in the suspensor also led to abnormal/ectopic cell division in the lower part of the suspensor, which gave rise to an ectopic embryo, resulting in twin embryos in some seeds. Furthermore, loss of function of GPT1 resulted in vacuolar localization of PIN-FORMED1 (PIN1) and altered DR5 auxin activity. Proper localization of PIN1 on the plasma membrane is essential to polar auxin transport and distribution, a key determinant of pattern formation during embryogenesis. Our findings suggest that the function of GPT1 in the embryo suspensor is linked to sugar and/or hormone distribution between the embryo proper and the maternal tissues, and is important for maintenance of suspensor identity and function during embryogenesis.

Specific expression of a sugar transporter that localizes to the plastids of cells in the embryo suspensor affects auxin activity and embryo development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号