首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas.

Methodology/Principal Findings

We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones.

Conclusions/Significance

We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.  相似文献   

2.
Our recent study shows a pivotal role of Dmp1 in quenching hyperproliferative signals from HER2 to the Arf-p53 pathway as a safety mechanism to prevent breast carcinogenesis. To directly demonstrate the role of Dmp1 in preventing HER2/neu-driven oncogenic transformation, we established Flag-Dmp1α transgenic mice (MDTG) under the control of the mouse mammary tumor virus (MMTV) promoter. The mice were viable but exhibited poorly developed mammary glands with markedly reduced milk production; thus more than half of parous females were unable to support the lives of new born pups. The mammary glands of the MDTG mice had very low Ki-67 expression but high levels of Arf, Ink4a, p53, and p21Cip1, markers of senescence and accelerated aging. In all strains of generated MDTG;neu mice, tumor development was significantly delayed with decreased tumor weight. Tumors from MDTG;neu mice expressed Flag-Dmp1α and Ki-67 in a mutually exclusive fashion indicating that transgenic Dmp1α prevented tumor growth in vivo. Genomic DNA analyses showed that the Dmp1α transgene was partially lost in half of the MDTG;neu tumors, and Western blot analyses showed Dmp1α protein downregulation in 80% of the cases. Our data demonstrate critical roles of Dmp1 in preventing mammary tumorigenesis and raise the possibility of treating breast cancer by restoring Dmp1α expression.  相似文献   

3.
Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP)-hemojuvelin (HJV)-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies have shown that hepcidin expression by macrophages increases following bacterial infection, and that hepcidin decreases iron release from macrophages in an autocrine and/or paracrine manner. Although previous studies have shown that lipopolysaccharide (LPS) can induce hepcidin expression in macrophages, whether hepcidin is also regulated by BMPs in macrophages is still unknown. Therefore, we examined the effects of BMP signaling on hepcidin expression in RAW 264.7 and J774 macrophage cell lines, and in primary peritoneal macrophages. We found that BMP4 or BMP6 alone did not have any effect on hepcidin expression in macrophages although they stimulated Smad1/5/8 phosphorylation and Id1 expression. In the presence of LPS, however, BMP4 and BMP6 were able to stimulate hepcidin expression in macrophages, and this stimulation was abolished by the NF-κB inhibitor Ro1069920. These results suggest that hepcidin expression is regulated differently in macrophages than in hepatocytes, and that BMPs regulate hepcidin expression in macrophages in a LPS-NF-κB dependent manner.  相似文献   

4.
5.
In EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins). We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day), GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.  相似文献   

6.
Cancer-associated fibroblasts (CAFs) are the most prominent cell type within the tumor stroma of many cancers, in particular breast carcinoma, and their prominent presence is often associated with poor prognosis1,2. CAFs are an activated subpopulation of stromal fibroblasts, many of which express the myofibroblast marker α-SMA3. CAFs originate from local tissue fibroblasts as well as from bone marrow-derived cells recruited into the developing tumor and adopt a CAF phenotype under the influence of the tumor microenvironment4. CAFs were shown to facilitate tumor initiation, growth and progression through signaling that promotes tumor cell proliferation, angiogenesis, and invasion5-8. We demonstrated that CAFs enhance tumor growth by mediating tumor-promoting inflammation, starting at the earliest pre-neoplastic stages9. Despite increasing evidence of the key role CAFs play in facilitating tumor growth, studying CAFs has been an on-going challenge due to the lack of CAF-specific markers and the vast heterogeneity of these cells, with many subtypes co-existing in the tumor microenvironment10. Moreover, studying fibroblasts in vitro is hindered by the fact that their gene expression profile is often altered in tissue culture11,12 . To address this problem and to allow unbiased gene expression profiling of fibroblasts from fresh mouse and human tissues, we developed a method based on previous protocols for Fluorescence-Activated Cell Sorting (FACS)13,14. Our approach relies on utilizing PDGFRα as a surface marker to isolate fibroblasts from fresh mouse and human tissue. PDGFRα is abundantly expressed by both normal fibroblasts and CAFs9,15 . This method allows isolation of pure populations of normal fibroblasts and CAFs, including, but not restricted to α-SMA+ activated myofibroblasts. Isolated fibroblasts can then be used for characterization and comparison of the evolution of gene expression that occurs in CAFs during tumorigenesis. Indeed, we and others reported expression profiling of fibroblasts isolated by cell sorting16. This protocol was successfully performed to isolate and profile highly enriched populations of fibroblasts from skin, mammary, pancreas and lung tissues. Moreover, our method also allows culturing of sorted cells, in order to perform functional experiments and to avoid contamination by tumor cells, which is often a big obstacle when trying to culture CAFs.  相似文献   

7.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.  相似文献   

8.
Bone morphogenetic proteins (BMPs) induce not only bone formation in vivo but also osteoblast differentiation of mesenchymal cells in vitro. Tumor necrosis factor α (TNFα) inhibits both osteoblast differentiation and bone formation induced by BMPs. However, the molecular mechanisms of these inhibitions remain unknown. In this study, we found that TNFα inhibited the alkaline phosphatase activity and markedly reduced BMP2- and Smad-induced reporter activity in MC3T3-E1 cells. TNFα had no effect on the phosphorylation of Smad1, Smad5, and Smad8 or on the nuclear translocation of the Smad1-Smad4 complex. In p65-deficient mouse embryonic fibroblasts, overexpression of p65, a subunit of NF-κB, inhibited BMP2- and Smad-induced reporter activity in a dose-dependent manner. Furthermore, this p65-mediated inhibition of BMP2- and Smad-responsive promoter activity was restored after inhibition of NF-κB by the overexpression of the dominant negative IκBα. Although TNFα failed to affect receptor-dependent formation of the Smad1-Smad4 complex, p65 associated with the complex. Chromatin immunoprecipitation and electrophoresis mobility shift assays revealed that TNFα suppressed the DNA binding of Smad proteins to the target gene. Importantly, the specific NF-κB inhibitor, BAY11-7082, abolished these phenomena. These results suggest that TNFα inhibits BMP signaling by interfering with the DNA binding of Smads through the activation of NF-κB.  相似文献   

9.
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial–mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator–activated receptor β/δ (PPARβ/δ) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARβ/δ stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARβ/δ regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARβ/δ regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARβ/δ, other epithelial–mesenchymal interactions may also be regulated in a similar manner.  相似文献   

10.
Cancer-associated fibroblasts (CAFs) are commonly acquired activated extracellular matrix (ECM)-producing myofibroblasts, a phenotypes with multiple roles in hepatic fibrogenesis and carcinogenesis via crosstalk with cohabitating stromal/cancer cells. Here, we discovered a mechanism whereby CAF-derived cytokines enhance hepatocellular carcinoma (HCC) progression and metastasis by activating the circRNA-miRNA-mRNA axis in tumor cells. CAFs secreted significantly higher levels of CXCL11 than normal fibroblasts (NFs), and CXCL11 also had comparatively higher expressions in HCC tissues, particularly in metastatic tissues, than para-carcinoma tissues. Both CAF-derived and experimentally introduced CXCL11 promoted HCC cell migration. Likewise, CAFs promoted tumor migration in orthotopic models, as shown by an increased number of tumor nodules, whereas CXCL11 silencing triggered a decrease of it. CXCL11 stimulation upregulated circUBAP2 expression, which was significantly higher in HCC tissues than para-carcinoma tissues. Silencing circUBAP2 reversed the effects of CXCL11 on the expression of IL-1β/IL-17 and HCC cell migration. Further downstream, the IFIT1 and IFIT3 levels were significantly upregulated in HCC cells upon CXCL11 stimulation, but downregulated upon circUBAP2 silencing. IFIT1 or IFIT3 silencing reduced the expression of IL-17 and IL-1β, and attenuated the migration capability of HCC cells. Herein, circUBAP2 counteracted miR-4756-mediated inhibition on IFIT1/3 via sponging miR-4756. miR-4756 inhibition reversed the effects induced by circUBAP2 silencing on the IL-17 and IL-1β levels and HCC cell migration. In orthotopic models, miR-4756 inhibition also reversed the effects on metastatic progression induced by silencing circUBAP2.Subject terms: Tumour biomarkers, Cancer  相似文献   

11.
Many components of Wnt/β-catenin signaling pathway also play critical roles in mammary tumor development, yet the role of the tumor suppressor gene APC (adenomatous polyposis coli) in breast oncongenesis is unclear. To better understand the role of Apc in mammary tumorigenesis, we introduced conditional Apc mutations specifically into two different mammary epithelial populations using K14-cre and WAP-cre transgenic mice that express Cre-recombinase in mammary progenitor cells and lactating luminal cells, respectively. Only the K14-cre–mediated Apc heterozygosity developed mammary adenocarcinomas demonstrating histological heterogeneity, suggesting the multilineage progenitor cell origin of these tumors. These tumors harbored truncation mutation in a defined region in the remaining wild-type allele of Apc that would retain some down-regulating activity of β-catenin signaling. Activating mutations at codons 12 and 61 of either H-Ras or K-Ras were also found in a subset of these tumors. Expression profiles of acinar-type mammary tumors from K14-cre; ApcCKO/+ mice showed luminal epithelial gene expression pattern, and clustering analysis demonstrated more correlation to MMTV-neu model than to MMTV-Wnt1. In contrast, neither WAP-cre–induced Apc heterozygous nor homozygous mutations resulted in predisposition to mammary tumorigenesis, although WAP-cre–mediated Apc deficiency resulted in severe squamous metaplasia of mammary glands. Collectively, our results suggest that not only the epithelial origin but also a certain Apc mutations are selected to achieve a specific level of β-catenin signaling optimal for mammary tumor development and explain partially the colon- but not mammary-specific tumor development in patients that carry germline mutations in APC.  相似文献   

12.
Bone morphogenetic proteins (BMPs) and Wnts are important signaling protein families with key roles in embryologic, patterning, development, and tissue remodeling in growth. BMP and Wnt-β-catenin are highly evolutionarily conserved pathways that, though often regulating similar cellular events, are independent signaling mechanisms that can have complementary or antagonistic effects depending on various factors, including cell type and developmental stage. Although BMP and Wnt-β-catenin have the ability to act entirely independently, there is a developing body of evidence for specific extra- and intra-cellular molecular interactions and crosstalk that occur between BMP and Wnt-β-catenin signaling and that again this may be cell type-specific. In the previous issue of Arthritis Research & Therapy, Papathanasiou and colleagues provide novel insights into the role and direct interaction of BMP2 and canonical Wnt-β-catenin signaling in regulating chondrocyte hypertrophy and matrix metalloproteinase/a disintegrin like and metalloproteinase with thrombospondin type I motif (MMP/ADAMTS) synthesis in osteoarthritis.In the previous issue of Arthritis Research & Therapy, Papathanasiou and colleagues [1] provide novel insights into the role and direct interaction of bone morphogenetic protein 2 (BMP2) and canonical Wnt-β-catenin signaling in regulating chondrocyte hypertrophy and matrix metalloproteinase (MMP)/aggrecanolytic ADAMTS (a disintegrin like and metalloproteinase with thrombospondin type I motif) synthesis in osteoarthritis (OA). OA is the most common cause of joint pain and disability, and with increasing age and obesity of the population, the already major socioeconomic importance will continue to increase. Currently, in most Western cultures, OA afflicts more than 10% of the entire population and over a third of those over 65; an estimated 25 to 30 million people in the US suffer from this disease. The central pathological feature of OA is often considered to be the progressive destruction of articular cartilage that normally provides the load-bearing surface in the joint. Much has been learned in recent years about the mechanisms that drive cartilage matrix breakdown and loss in OA, and chondrocyte-derived metalloproteinases, particularly the ADAMTS and collagenolytic MMPs, have a key role. It is evident that a phenotypic shift in the mature articular chondrocyte to a cell type that displays many characteristics typical of hypertrophic cells in the lower zones of the growth plate is a typical feature of OA and is associated with the progressive cartilage breakdown observed (reviewed in [2]). Less clearly understood are the specific signaling pathways involved in regulating the chondrocyte phenotype, how they interact, and whether this changes in health and in diseases such as OA.BMPs and Wnts are important signaling protein families with key roles in embryologic, patterning, development, and tissue remodeling in growth. BMP and Wnt-β-catenin are highly evolutionarily conserved pathways that, though often regulating similar cellular events, are independent signaling mechanisms that can have complementary or antagonistic effects depending on various factors, including cell type and developmental stage (reviewed in [3]). Although BMP and Wnt-β-catenin have the ability to act entirely independently, there is a developing body of evidence for specific extra-and intra-cellular molecular interactions and crosstalk that occur between BMP and Wnt-β-catenin signaling and that again may be cell type-specific [3]. In addition to having a key role in development, BMPs and Wnts are emerging as critical regulators of bone and cartilage homeostasis in the adult and, importantly, in the onset and progression of musculoskeletal diseases.BMPs are multi-functional growth factors that belong to the transforming growth factor-β super family. Evidence suggests that BMP signaling is mediated primarily through the canonical BMP-Smad pathway in chondrocytes. BMPs bind the type II receptor and phosphorylate type I serine or threonine receptors, which subsequently phosphorylate Smad1, Smad5, and Smad8. BMPs are known to induce human mesenchymal stem cells to differentiate into chondrocytes, and BMP2 is a crucial local factor for chondrocyte proliferation and maturation during endochondral ossification [4,5]. In their report, Papathanasiou and colleagues show not only that human end-stage OA chondrocytes produce BMP2 and BMP4 but also, importantly, that BMP2, but not BMP4, can drive expression of low-density lipoprotein receptor 5 (LRP5). LRP5 is one of the most important co-receptors in the canonical Wnt-β-catenin signaling pathway; binding of Wnt ligands to the frizzled/LRP co-receptor complex leads to β-catenin stabilization, nuclear translocation, and activation of target genes.There is a large body of evidence demonstrating the central role for Wnt signaling in regulating adult bone turnover; increased β-catenin activity inducing bone production and inhibition of soluble antagonists is an emerging therapeutic approach for osteoporotic and inflammatory bone loss [6,7]. In cartilage, Wnt-β-catenin signaling plays a dual role; activity is essential for chondrocyte proliferation and maintenance of their phenotypic characteristics [8], but excessive activity increases chondrocyte hypertrophy and expression of cartilage degrades metalloproteinases [9]. The effect may be cell type- specific, and Wnt-β-catenin activation is essential for maintenance of the superficial zone chondrocyte phenotype and proteoglycan 4 (lubricin) expression [8]. Inhibition of β-catenin rapidly leads to downregulation of lubricin and increased collagen × expression in superficial zone chondrocytes. In chondrocytes from human end-stage OA cartilage, activation of canonical Wnt-β-catenin signaling by Wnt-2B and Wnt-16 can drive MMP and aggrecanase production [9]. Understanding the mechanisms that regulate Wnt signaling in chondrocytes in OA may provide keys to controlling cartilage degradation.One of the most important findings by Papathanasiou and colleagues is the demonstration of a new and unique function of BMP2 in chondrocytes in acting as a regulator of canonical Wnt-β-catenin signaling. Treatment of both normal and OA primary human chondrocytes with BMP2 for 12 hours enhanced total β-catenin expression while diminishing the degradation of β-catenin (phospho-β-catenin). This was accompanied by significant increases in mRNA for key cartilage-degrading enzymes MMP-13 and ADAMTS-5 in concert with a shift toward a hypertrophic chondrocyte phenotype as measured by increased collagen × expression. This effect was absent in LRP5 small interfering RNA (siRNA) pretreated chondrocytes and did not occur with BMP4, suggesting the unique function of BMP2 in specifically upregulating LRP5 and augmenting Wnt-β-catenin signaling. The BMP2-driven increase in LRP5 mRNA was mediated through Smad1/5/8 binding to the LRP5 promoter.The paper by Papathanasiou and colleagues adds to the accumulating evidence that increased or perhaps excessive activation of canonical Wnt-β-catenin signaling in chondrocytes is detrimental and contributes to OA cartilage degradation. Therapeutic approaches to block or suppress canonical Wnt-β-catenin signaling may protect cartilage damage in end-stage OA. There are many naturally occurring Wnt-β-catenin signaling antagonists, including dickkopf 1 (DKK1), secreted frizzled-related proteins (sFRPs), and sclerostin (SOST). Evidence suggests that circulating DKK1 levels negatively correlate with biomarkers of cartilage breakdown in patients with OA [10]; sFRP3 knockout mice have augmented cartilage proteoglycan loss in a collagenase-induced instability model of arthritis [11], and co-treatment of SOST with pro-inflammatory cytokines can attenuate cartilage matrix breakdown [12]. The role of SOST is interesting in light of the interaction between BMP2 and Wnt signaling pathways reported by Papathanasiou and colleagues. It appears that SOST can also function as a BMP antagonist in osteoblast and osteocytes by binding intra-cellularly to BMP7 and targeting the growth factor for proteosomal degradation [13]. This provides yet another mechanism by which BMP and Wnt signaling pathways may directly interact; it will be interesting to see whether this effect of SOST on BMP7 (and possibly other BMPs) also occurs in chondrocytes, particularly in OA, where chondrocyte SOST expression is increased [12].The BMP and Wnt signaling pathways are critical in regulating chondrocytes and maintaining the health and integrity of cartilage matrix. In other cell types/organs such as those in bone, it is the combinatorial integration and complex crosstalk between these two pathways that are emerging as significant regulators of development and tissue homeostasis [3]. The findings by Papathanasiou and colleagues suggest that similar signaling pathway interactions may be important in chondrocytes and could play a role in the development and progression of OA. A better appreciation of chondrocyte regulatory mechanisms may provide new avenues for development of therapeutic approaches for the treatment of OA.  相似文献   

13.
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-α/β) and gamma interferon (IFN-γ) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-α/β or IFN-γ receptor gene. We found that the SAg response to MMTV was not modified in IFN-α/βR0/0 and IFN-γR0/0 mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-α/βR0/0 and IFN-γR0/0 mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-γR0/0 mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.  相似文献   

14.
15.
16.
Ectopic expression of 14-3-3ζ has been found in various malignancies, including lung cancer, liver cancer, head and neck squamous cell carcinoma (HNSCC), and so on. However, the effect of 14-3-3ζ in the regulation of interactions between tumor cells and the immune system has not been previously reported. In this study, we aimed to investigate whether and how 14-3-3ζ is implicated in tumor inflammation modulation and immune recognition evasion. In oral squamous cell carcinoma (OSCC) cell lines and cancer tissues, we found that 14-3-3ζ is overexpressed. In OSCC cells, 14-3-3ζ knockdown resulted in the up-regulated expression of inflammatory cytokines. In contrast, 14-3-3ζ introduction attenuated cytokine expression in human normal keratinocytes and fibroblasts stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Furthermore, supernatants from 14-3-3ζ knockdown OSCC cells dramatically altered the response of peritoneal macrophages, dendritic cells and tumor-specific T cells. Interestingly, Stat3 was found to directly interact with 14-3-3ζ and its disruption relieved the inhibition induced by 14-3-3ζ in tumor inflammation. Taken together, our studies provide evidence that 14-3-3ζ may regulate tumor inflammation and immune response through Stat3 signaling in OSCC.  相似文献   

17.
Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.  相似文献   

18.
Hyaluronan (HA) promotes transforming growth factor (TGF)-β1-driven myofibroblast phenotype. However, HA can also have disease-limiting activity. Bone morphogenetic protein-7 (BMP7) is an antifibrotic cytokine that antagonizes TGF-β1, and isolated studies have demonstrated that HA can both mediate and modulate BMP7 responses. In this study, we investigated whether BMP7 can modulate HA in a manner that leads to prevention/reversal of TGF-β1-driven myofibroblast differentiation in human lung fibroblasts. Results demonstrated that BMP7 prevented and reversed TGF-β1-driven myofibroblast differentiation through a novel mechanism. BMP7 promoted the dissolution and internalization of cell-surface HA into cytoplasmic endosomes. Endosomal HA co-localized with the HA-degrading enzymes, hyaluronidase-1 and hyaluronidase-2 (Hyal2). Moreover, BMP7 showed differential regulation of CD44 standard and variant isoform expression, when compared with TGF-β1. In particular, BMP7 increased membrane expression of CD44v7/8. Inhibiting CD44v7/8 as well as blocking Hyal2 and the Na+/H+ exchanger-1 at the cell-surface prevented BMP7-driven HA internalization and BMP7-mediated prevention/reversal of myofibroblast phenotype. In summary, a novel mechanism of TGF-β1 antagonism by BMP7 is shown and identifies alteration in HA as critical in mediating BMP7 responses. In addition, we identify Hyal2 and CD44v7/8 as new potential targets for manipulation in prevention and reversal of fibrotic pathology.  相似文献   

19.
Stromal cells are important regulators of mammary carcinoma growth and metastasis. We have previously shown that a 3T3-L1 adipocyte cell line secretes hepatocyte growth factor (HGF), which stimulates proliferation of a murine mammary carcinoma (SP1) in monolayer cultures (DNA Cell Biol.13, 1189–1897, 1994). We now examine the role of growth factors and the extracellular matrix protein fibronectin in stimulation of anchorage-independent growth of SP1 cells. Purified transforming growth factor-β (TGF-β) stimulated significant colony growth in soft agar cultures, whereas HGF had a lesser effect. Analysis by confocal microscopy revealed that carcinoma cell colonies contained extracellular microfibrils composed of fibronectin. Partial depletion of fibronectin from 7% FBS/agar cultures reduced the number of colonies; colony growth could be recovered by adding back exogenous fibronectin. Addition of the 70-kDa N-terminal fragment of fibronectin, which inhibits fibronectin fibril formation, reduced growth of SP1 cell colonies, but an 85-kDa fragment containing the cell binding domain did not inhibit colony growth. These findings indicate that deposition of extracellular fibronectin fibrils is necessary, but not sufficient, for anchorage-independent growth of SP1 mammary carcinoma cells; growth factors are also required. SP1 cells had less fibronectin mRNA and secreted less fibronectin protein under anchorage-independent conditions than under anchorage-dependent conditions, as determined by Northern blotting and immunoprecipitation analysis. Thus, both growth factors (HGF and TGF-β) and fibronectin may be important regulators of paracrine stimulation by stromal cells of anchorage-independent growth of mammary carcinoma cells.  相似文献   

20.

Background

Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ).

Methods

Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ.

Results

The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A.

Conclusion

During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号