首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
There are two ‘pathways’ of replication of λ plasmids in Escherichia coli. One pathway requires the assembly of a new replication complex before replication and the second pathway is based on the activity of the replication complex inherited by one of two daughter plasmid copies after a preceding replication round. Such a phenomenon was postulated to occur also in other replicons, including Saccharomyces cerevisiae autonomously replicating sequences. Here we investigated directionality of λ plasmid replication carried out by the heritable and newly assembled replication complexes. Using two-dimensional agarose gel electrophoresis and electron microscopy we demonstrated that in both normal growth conditions and during the relaxed response to amino acid starvation (when only replication carried out by the heritable complex is possible), bidirectionally and undirectionally replicating plasmid molecules occurred in host cells in roughly equal proportions. The results are compatible with the hypothesis that both complexes (heritable and newly assembled) are equivalent.  相似文献   

5.

Background

Highly parallel sequencing technologies have become important tools in the analysis of sequence polymorphisms on a genomic scale. However, the development of customized software to analyze data produced by these methods has lagged behind.

Methods/Principal Findings

Here I describe a tool, ‘galign’, designed to identify polymorphisms between sequence reads obtained using Illumina/Solexa technology and a reference genome. The ‘galign’ alignment tool does not use Smith-Waterman matrices for sequence comparisons. Instead, a simple algorithm comparing parsed sequence reads to parsed reference genome sequences is used. ‘galign’ output is geared towards immediate user application, displaying polymorphism locations, nucleotide changes, and relevant predicted amino-acid changes for ease of information processing. To do so, ‘galign’ requires several accessory files easily derived from an annotated reference genome. Direct sequencing as well as in silico studies demonstrate that ‘galign’ provides lesion predictions comparable in accuracy to available prediction programs, accompanied by greater processing speed and more user-friendly output. We demonstrate the use of ‘galign’ to identify mutations leading to phenotypic consequences in C. elegans.

Conclusion/Significance

Our studies suggest that ‘galign’ is a useful tool for polymorphism discovery, and is of immediate utility for sequence mining in C. elegans.  相似文献   

6.
7.
Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. americanus’, and ‘Ca. L. africanus’. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol), in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative ‘Ca. L. asiaticus’ Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from ‘Ca. L. asiaticus’-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other ‘Ca. L. asiaticus’ strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region.  相似文献   

8.
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as ‘BRCAness’. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.  相似文献   

9.
10.
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.  相似文献   

11.
12.
13.
14.
15.
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.  相似文献   

16.
17.
18.
19.
Larval dispersal can connect distant subpopulations, with important implications for marine population dynamics and persistence, biodiversity conservation and fisheries management. However, different dispersal pathways may affect the final phenotypes, and thus the performance and fitness of individuals that settle into subpopulations. Using otolith microchemical signatures that are indicative of ‘dispersive’ larvae (oceanic signatures) and ‘non-dispersive’ larvae (coastal signatures), we explore the population-level consequences of dispersal-induced variability in phenotypic mixtures for the common triplefin (a small reef fish). We evaluate lipid concentration and otolith microstructure and find that ‘non-dispersive’ larvae (i) have greater and less variable lipid reserves at settlement (and this variability attenuates at a slower rate), (ii) grow faster after settlement, and (iii) experience similar carry-over benefits of lipid reserves on post-settlement growth relative to ‘dispersive’ larvae. We then explore the consequences of phenotypic mixtures in a metapopulation model with two identical subpopulations replenished by variable contributions of ‘dispersive’ and ‘non-dispersive’ larvae and find that the resulting phenotypic mixtures can have profound effects on the size of the metapopulation. We show that, depending upon the patterns of connectivity, phenotypic mixtures can lead to larger metapopulations, suggesting dispersal-induced demographic heterogeneity may facilitate metapopulation persistence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号