首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The Wnt signaling pathway is implicated in major physiologic cellular functions, such as proliferation, migration, cell fate specification, maintenance of pluripotency and induction of tumorigenicity. Proliferation and migration are important responses of T-cells, which are major cellular targets of HIV infection. Using an informatics screen, we identified a previously unsuspected interaction between HIV’s Nef protein and β-catenin, a key component of the Wnt pathway. A segment in Nef contains identical amino acids at key positions and structurally mimics the β-catenin binding sites on endogenous β-catenin ligands. The interaction between Nef and β-catenin was confirmed in vitro and in a co-immunoprecipitation from HEK293 cells. Moreover, the introduction of Nef into HEK293 cells specifically inhibited a Wnt pathway reporter.  相似文献   

4.

Background/Objective

IFNs are a group of cytokines that possess potent antiviral and antitumor activities, while β-catenin pathway is a proliferative pathway involved in carcinogenesis. Interaction between these two pathways has not been well elaborated in hepatocellular carcinoma (HCC).

Methods

HCC cell lines, HepG2 and Huh7, were used in this study. β-catenin protein levels and corresponding signaling activities were observed by flow cytometry and luciferase assay, respectively. Cell proliferation was quantified by counting viable cells under microscope, and apoptosis by TUNEL assay. DKK1 and GSK3β levels were determined by flow cytometry. Secreted DKK1 was tested by ELISA. FLUD, S3I and aDKK1 were used to inhibit STAT1, STAT3 and DKK1 activities, respectively.

Results

Our findings show that all three types of IFNs, IFNα, IFNγ and IFNλ, are capable of inhibiting β-catenin signaling activity in HepG2 and Huh7 cells, where IFNγ was the strongest (p<0.05). They expressed suppression of cellular proliferation and induced apoptosis. IFNγ expressed greater induction ability when compared to IFNα and IFNλ (p<0.05). All tested IFNs could induce DKK1 activation but not GSK3β in HepG2 and Huh7 cells. IFNs induced STAT1 and STAT3 activation but by using specific inhibitors, we found that only STAT3 is vital for IFN-induced DKK1 activation and apoptosis. In addition, DKK1 inhibitor blocked IFN-induced apoptosis. The pattern of STAT3 activation by different IFNs is found consistent with the levels of apoptosis with the corresponding IFNs (p<0.05).

Conclusions

In hepatocellular carcinoma, all three types of IFNs are found to induce apoptosis by inhibiting β-catenin signaling pathway via a STAT3- and DKK1-dependent pathway. This finding points to a cross-talk between different IFN types and β-catenin signaling pathways which might be carrying a biological effect not only on HCC, but also on processes where the two pathways bridge.  相似文献   

5.
6.
Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) promotes their desensitization and internalization. Here, we sought to determine the role of GRK2 on FcϵRI signaling and mediator release in mast cells. The strategies utilized included lentiviral shRNA-mediated GRK2 knockdown, GRK2 gene deletion (GRK2flox/flox/cre recombinase) and overexpression of GRK2 and its regulator of G protein signaling homology (RH) domain (GRK2-RH). We found that silencing GRK2 expression caused ∼50% decrease in antigen-induced Ca2+ mobilization and degranulation but resulted in ablation of cytokine (IL-6 and IL-13) generation. The effect of GRK2 on cytokine generation does not require its catalytic activity but is mediated via the phosphorylation of p38 and Akt. Overexpression of GRK2 or its RH domain (GRK2-RH) enhanced antigen-induced mast cell degranulation and cytokine generation without affecting the expression levels of any of the FcϵRI subunits (α, β, and γ). GRK2 or GRK2-RH had no effect on antigen-induced phosphorylation of FcϵRIγ or Src but enhanced tyrosine phosphorylation of Syk. These data demonstrate that GRK2 modulates FcϵRI signaling in mast cells via at least two mechanisms. One involves GRK2-RH and modulates tyrosine phosphorylation of Syk, and the other is mediated via the phosphorylation of p38 and Akt.  相似文献   

7.
Cancer-induced immunosuppression is a major problem reducing antitumor effects of immunotherapies, but its molecular mechanism has not been well understood. We evaluated immunosuppressive roles of activated Wnt/β-catenin pathways in human melanoma for dendritic cells (DCs) and CTLs. IL-10 expression was associated with β-catenin accumulation in human melanoma cell lines and tissues and was induced by direct β-catenin/TCF binding to the IL-10 promoter. Culture supernatants from β-catenin-accumulated melanoma have activities to impair DC maturation and to induce possible regulatory DCs. Those immunosuppressive culture supernatant activities were reduced by knocking down β-catenin in melanoma cells, partly owing to downregulation of IL-10. Murine splenic and tumor-infiltrating DCs obtained from nude mice implanted with human mutant β-catenin-overexpressed melanoma cells had less ability to activate T cells than did DCs from mice with control melanoma cells, showing in vivo suppression of DCs by activated Wnt/β-catenin signaling in human melanoma. This in vivo DC suppression was restored by the administration of a β-catenin inhibitor, PKF115-584. β-catenin-overexpressed melanoma inhibited IFN-γ production by melanoma-specific CTLs in an IL-10-independent manner and is more resistant to CTL lysis in vitro and in vivo. These results indicate that Wnt/β-catenin pathways in human melanoma may be involved in immunosuppression and immunoresistance in both induction and effector phases of antitumor immunoresponses partly through IL-10 production, and they may be attractive targets for restoring immunocompetence in patients with Wnt/β-catenin-activated melanoma.  相似文献   

8.
9.
In photoreceptor synaptic terminals, voltage-gated Cav1.4 channels mediate Ca2+ signals required for transmission of visual stimuli. Like other high voltage-activated Cav channels, Cav1.4 channels are composed of a main pore-forming Cav1.4 α1 subunit and auxiliary β and α2δ subunits. Of the four distinct classes of β and α2δ, β2 and α2δ4 are thought to co-assemble with Cav1.4 α1 subunits in photoreceptors. However, an understanding of the functional properties of this combination of Cav subunits is lacking. Here, we provide evidence that Cav1.4 α1, β2, and α2δ4 contribute to Cav1.4 channel complexes in the retina and describe their properties in electrophysiological recordings. In addition, we identified a variant of β2, named here β2X13, which, along with β2a, is present in photoreceptor terminals. Cav1.4 α1, β2, and α2δ4 were coimmunoprecipitated from lysates of transfected HEK293 cells and mouse retina and were found to interact in the outer plexiform layer of the retina containing the photoreceptor synaptic terminals, by proximity ligation assays. In whole-cell patch clamp recordings of transfected HEK293T cells, channels (Cav1.4 α1 + β2X13) containing α2δ4 exhibited weaker voltage-dependent activation than those with α2δ1. Moreover, compared with channels (Cav1.4 α1 + α2δ4) with β2a, β2X13-containing channels exhibited greater voltage-dependent inactivation. The latter effect was specific to Cav1.4 because it was not seen for Cav1.2 channels. Our results provide the first detailed functional analysis of the Cav1.4 subunits that form native photoreceptor Cav1.4 channels and indicate potential heterogeneity in these channels conferred by β2a and β2X13 variants.  相似文献   

10.

Background

The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown.

Methodology/Principal Findings

We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10–30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells.

Conclusion/Significance

This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells.  相似文献   

11.
12.
Abstract

Rat C6 glioma cells have both β1- and β2-adrenergic receptors in ~ 7:3 ratio. When the cells were exposed to the β-adrenergic agonist isoproterenol, there was a rapid sequestration of up to 50% of the surface receptor population over a 30-min period as measured by the loss of binding of the hydrophilic ligand [3H] CGP-12177 to intact cells. Using the β2-selective antagonist CGP 20712A to quantify the proportion of the two subtypes, it was found that although both β1 and β2 receptors were sequestered, the latter were sequestered initially twice as fast as the former. More prolonged agonist exposure led to a down-regulation of ~ 90% of the total receptor population by 6 h as measured by the loss of binding of the more hydrophobic ligand [125I] iodocyanopindolol to cell lysates. The two subtypes, however, underwent down-regulation with similar kinetics. Treatment of the cells with agents that raise cyclic AMP levels such as cholera toxin and forskolin resulted in a slower, but still coordinated down-regulation of both subtypes. Thus, there appears to be both independent and coordinate regulation of endogenous β1-and β2-adrenergic receptors in the same cell line.  相似文献   

13.
Cell-volume changes induced by terbutaline (a specific β2-agonist) were studied morphometrically in rat fetal distal lung epithelium (FDLE) cells. Cell-volume changes qualitatively differed with the concentration of terbutaline. Terbutaline of 10−10–10−8 m induced transient cell swelling. Terbutaline of 10−7 m induced transient cell swelling followed by slow cell shrinkage. Terbutaline of 10−6–10−5 m induced rapid cell shrinkage followed by slow cell shrinkage. Terbutaline of 10−3 m induced transient cell shrinkage; then cell volume oscillated during stimulation. Benzamil of 10−6 m suppressed the cell swelling induced by 10−10–10−8 m terbutaline and quinine of 10−3 m inhibited the cell shrinkage induced by 10−6–10−5 m terbutaline. These results suggest that cell swelling would be induced by NaCl influx and the cell shrinkage is by KCl efflux. Dibutyryl cyclic AMP (DBcAMP) also induced similar cell-volume changes over a wide range of concentrations (10−9–10−3 m): a low concentration induced transient cell swelling; a high concentration, rapid and slow cell shrinkage. Forskolin (10−4 m), like terbutaline (10−5 m), induced rapid cell shrinkage followed by slow cell shrinkage, and this decrease in the cell volume was enhanced by the presence of benzamil. On the other hand, cell shrinkage was induced by ionomycin (even low concentration; 3 × 10−10 m ionomycin), and after that cell volume remained at a plateau level. Removal of extracellular Ca2+ abolished the cell swelling caused by terbutaline of 10−10–10−8 m. With removal of extracellular Ca2+, the initial, rapid cell shrinkage induced by 10−5 m terbutaline became transient, but we still detected slow cell shrinkage similar to that in the presence of extracellular Ca2+. Overall, at low concentrations (10−10–10−8 m), terbutaline induced benzamil-sensitive cell swelling in FDLE cells, which was cAMP- and Ca2+-dependent; high concentrations (≥−6) induced quinine-sensitive rapid cell shrinkage, which was Ca2+-dependent; high concentrations (≥−7) induced slow cell shrinkage, which was cAMP-dependent. These findings suggest that terbutaline regulates cell volume in FDLE cells by cytosolic cAMP and Ca2+ through activation of Na+ and K+ channels. Received: 13 March 1995/Revised: 17 January 1996  相似文献   

14.
15.
16.
The Nav1.6 voltage-gated sodium channel α subunit isoform is abundantly expressed in the adult rat brain. To assess the functional modulation of Nav1.6 channels by the auxiliary β1 subunit we expressed the rat Nav1.6 sodium channel α subunit by stable transformation in HEK293 cells either alone or in combination with the rat β1 subunit and assessed the properties of the reconstituted channels by recording sodium currents using the whole-cell patch clamp technique. Coexpression with the β1 subunit accelerated the inactivation of sodium currents and shifted the voltage dependence of channel activation and steady-state fast inactivation by approximately 5–7 mV in the direction of depolarization. By contrast the β1 subunit had no effect on the stability of sodium currents following repeated depolarizations at high frequencies. Our results define modulatory effects of the β1 subunit on the properties of rat Nav1.6-mediated sodium currents reconstituted in HEK293 cells that differ from effects measured previously in the Xenopus oocyte expression system. We also identify differences in the kinetic and gating properties of the rat Nav1.6 channel expressed in the absence of the β1 subunit compared to the properties of the orthologous mouse and human channels expressed in this system.  相似文献   

17.
A novel enzyme-linked receptor assay (ELRA) based on β2-adrenergic receptor (β2-AR) has been developed for rapid and high-throughput detection of β-adrenergic agonists (β-agonists) in urine. Human embryonic kidney cells (HEK293) were introduced as the expression system to enhance the functionality of the recombinant β2-AR, and the attempt to detect β-agonists in swine urine using such approaches was accomplished unprecedentedly. In this article, a recombinant porcine β2-AR was produced in the inner membrane of HEK293 cells and purified from crude membrane protein by nickel-nitrilotriacetic acid affinity chromatography. After activity identification, the recombinant receptor was used in the development of direct competitive ELRA. Several parameters such as blocking buffer and blocking process were optimized and the performance of the system was determined. The IC50 concentrations of clenbuterol, salbutamol, and ractopamine were 34, 53 and 63 μg/L, and the average recovery rates were 68.2%, 60.3% and 65.5%, respectively. ELRA based on β2-AR shows a series of advantages such as safety, easy operation, and high efficiency, making it promising for the rapid screening of β-agonists in animal urine.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号