首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phylogenetic position of tarsiers within the primates has been a controversial subject for over a century. Despite numerous morphological and molecular studies, there has been weak support for grouping tarsiers with either strepsirrhine primates in a prosimian clade or with anthropoids in a haplorrhine clade. Here, we take advantage of the recently released whole genome assembly of the Philippine tarsier, Tarsius syrichta, in order to infer the phylogenetic relationship of Tarsius within the order Primates. We also present estimates of divergence times within the primates. Using a 1.26 million base pair multiple sequence alignment derived from 1078 orthologous genes, we provide overwhelming statistical support for the presence of a haplorrhine clade. We also present divergence date estimates using local relaxed molecular clock methods. The estimated time of the most recent common ancestor of extant Primates ranged from 64.9 Ma to 72.6 Ma, and haplorrhines were estimated to have a most recent common ancestor between 58.9 Ma and 68.6 Ma. Examination of rates of nucleotide substitution in the three major extant primate clades show that anthropoids have a slower substitution rate than either strepsirrhines or tarsiers. Our results provide the framework on which primate morphological, reproductive, and genomic features can be reconstructed in the broader context of mammalian phylogeny.  相似文献   

2.
Aim In an attempt to use molecular and fossil data interactively in historical biogeography, we studied the phylogeography of five Plateumaris leaf beetles in Japan using mitochondrial cytochrome oxidase subunit I (COI) sequence data to explore interspecific differences in phylogeographical patterns and estimate the timings of colonization and geographical differentiation. Location A total of 461 beetles from five species on Hokkaido, Honshu and Kyushu islands of Japan were analysed with 117 beetles from three conspecies and two congeners from the mainland (Russia, including Sakhalin; Korea; Mongolia; Belgium; France; hereafter, the continent). Methods Using the sequence data from a 750‐bp portion of the COI gene, we studied the phylogeny of COI haplotypes, intraspecific population differentiation using analysis of molecular variance and the Mantel test, and intraspecific phylogeography using nested clade analysis. In addition, divergence times between the continental and Japanese lineages, as well as among the various Japanese lineages, were estimated using a Bayesian approach with node constraints based on fossil records of extant species. Results Three widely distributed species showed different degrees of geographical differentiation corresponding to their different colonization history in Japan. Bayesian estimates of divergence time revealed that one of two endemic species, which originated before the late Pliocene, attained intraspecific differentiation through the Pliocene and Pleistocene, whereas another endemic species has been confined in one locality, and three non‐endemic species colonized Japan after the mid‐Pleistocene. Main conclusions Molecular analyses of an insect group with relatively abundant fossil data can contribute greatly to the understanding of diverse biogeographical histories of related species in a region. Bayesian estimates of divergence time could be used to assess the variable evolutionary rates of the COI gene, and may be applied to other related insect species.  相似文献   

3.
Inferring speciation times under an episodic molecular clock   总被引:5,自引:0,他引:5  
We extend our recently developed Markov chain Monte Carlo algorithm for Bayesian estimation of species divergence times to allow variable evolutionary rates among lineages. The method can use heterogeneous data from multiple gene loci and accommodate multiple fossil calibrations. Uncertainties in fossil calibrations are described using flexible statistical distributions. The prior for divergence times for nodes lacking fossil calibrations is specified by use of a birth-death process with species sampling. The prior for lineage-specific substitution rates is specified using either a model with autocorrelated rates among adjacent lineages (based on a geometric Brownian motion model of rate drift) or a model with independent rates among lineages specified by a log-normal probability distribution. We develop an infinite-sites theory, which predicts that when the amount of sequence data approaches infinity, the width of the posterior credibility interval and the posterior mean of divergence times form a perfect linear relationship, with the slope indicating uncertainties in time estimates that cannot be reduced by sequence data alone. Simulations are used to study the influence of among-lineage rate variation and the number of loci sampled on the uncertainty of divergence time estimates. The analysis suggests that posterior time estimates typically involve considerable uncertainties even with an infinite amount of sequence data, and that the reliability and precision of fossil calibrations are critically important to divergence time estimation. We apply our new algorithms to two empirical data sets and compare the results with those obtained in previous Bayesian and likelihood analyses. The results demonstrate the utility of our new algorithms.  相似文献   

4.
An understanding of the evolution of modern terrestrial ecosystems requires an understanding of the dynamics associated with angiosperm evolution, including the timing of their origin and diversification into their extraordinary present-day diversity. Molecular estimates of angiosperm age have varied widely, and many substantially predate the Early Cretaceous fossil appearance of the group. In this study, the effect of different genes, codon positions, and chronological constraints on node ages are examined on divergence time estimates across seed plants, with a special focus on angiosperms. Penalized likelihood was used to estimate divergence times on a phylogenetic hypothesis for seed plants derived from Bayesian analysis, with branch lengths estimated with maximum likelihood. The plastid genes atpB, psaA, psbB, and rbcL were used individually and in combination, using first and second, third, and the three codon positions, including and excluding age constraints on 20 nodes derived from a critical examination of the land-plant fossil record. The optimal level of rate smoothing according to each unconstrained and constrained dataset was obtained with penalized likelihood. Tests for a molecular clock revealed significantly unclocklike rates in all datasets. Addition of fossil constraints resulted in even greater departures from constancy. Consistently with significant deviations from a clock, estimated optimal smoothing values were low, but a strict correlation between rate heterogeneity and optimal smoothing value was not found. Age estimates for nodes across the phylogeny varied, sometimes substantially, with gene and codon position. Nevertheless, estimates based on the four concatenated genes are very similar to the mean of the four individual gene estimates. For any given node, unconstrained age estimates are more variable than constrained estimates and are frequently younger than well-substantiated fossil members of the clade. Constrained estimates of ages of clades are older than unconstrained estimates and oldest fossil representatives, sometimes substantially so. Angiosperm age estimates decreased as rate smoothing increased. Whereas the range of unconstrained angiosperm age estimates spans the fossil age of the clade, the range of constrained estimates is narrower (and older) than the earliest angiosperm fossils. Results unambiguously indicate the relevance of constraints in reducing the variability of ages derived from different partitions of the data and diminishing the effect of the smoothing parameter. Constrained optimizations of divergence times and substitution rates across the phylogeny suggest appreciably different evolutionary dynamics for angiosperms and for gymnosperms. Whereas the gymnosperm crown group originated shortly after the origin of seed plants, a long time elapsed before the origin of crown group angiosperms. Although absolute age estimates of angiosperms and angiosperm clades are older than their earliest fossils, the estimated pace of phylogenetic diversification largely agrees with the rapid appearance of angiosperm lineages in stratigraphic sequences.  相似文献   

5.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

6.
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates.  相似文献   

7.
The age of the angiosperms: a molecular timescale without a clock   总被引:8,自引:0,他引:8  
The age of the angiosperms has long been of interest to botanists and evolutionary biologists. Many early efforts to date the age of the angiosperms and evolutionary divergences within the angiosperm clade using a molecular clock have yielded age estimates that are grossly inconsistent with the fossil record. We investigated the age of angiosperms using Bayesian relaxed clock (BRC) and penalized likelihood (PL) approaches. Both of these methods allow the incorporation of multiple fossil constraints into the optimization procedure. The BRC method allows a range of values for among-lineage rate of substitution, from a nearly clocklike behavior to a condition in which each branch is allowed an optimal substitution rate, and also accounts for variation in molecular evolution across multiple genes. A topology derived from an analysis of genes from all three plant genomes for 71 taxa was used as a backbone. The effects on age estimates of different genes, single-gene versus concatenated datasets, and the inclusion and assumptions of fossils as age constraints were examined. In addition, the influence of prior distributions on estimates of divergence times was also explored. These results indicate that widely divergent age estimates can result from the different methods (198-139 million years ago), different sources of data (275-122 million years ago), and the inclusion of temporal constraints to topologies. Most dates, however, are between 180-140 million years ago, suggesting a Middle Jurassic-Early Cretaceous origin of flowering plants, predating the oldest unequivocal fossil angiosperms by about 45-5 million years. Nonetheless, these dates are consistent with other recent studies that have used methods that relax the assumption of a strict molecular clock and also agree with the hypothesis that the angiosperms may be somewhat older than the fossil record indicates.  相似文献   

8.
The phylogenetic relationships of 46 echinoids, with representatives from 13 of the 14 ordinal-level clades and about 70% of extant families commonly recognized, have been established from 3 genes (3,226 alignable bases) and 119 morphological characters. Morphological and molecular estimates are similar enough to be considered suboptimal estimates of one another, and the combined data provide a tree that, when calibrated against the fossil record, provides paleontological estimates of divergence times and completeness of their fossil record. The order of branching on the cladogram largely agrees with the stratigraphic order of first occurrences and implies that their fossil record is more than 85% complete at family level and at a resolution of 5-Myr time intervals. Molecular estimates of divergence times derived from applying both molecular clock and relaxed molecular clock models are concordant with estimates based on the fossil record in up to 70% of cases, with most concordant results obtained using Sanderson's semiparametric penalized likelihood method and a logarithmic-penalty function. There are 3 regions of the tree where molecular and fossil estimates of divergence time consistently disagree. Comparison with results obtained when molecular divergence dates are estimated from the combined (morphology + gene) tree suggests that errors in phylogenetic reconstruction explain only one of these. In another region the error most likely lies with the paleontological estimates because taxa in this region are demonstrated to have a very poor fossil record. In the third case, morphological and paleontological evidence is much stronger, and the topology for this part of the molecular tree differs from that derived from the combined data. Here the cause of the mismatch is unclear but could be methodological, arising from marked inequality of molecular rates. Overall, the level of agreement reached between these different data and methodological approaches leads us to believe that careful application of likelihood and Bayesian methods to molecular data provides realistic divergence time estimates in the majority of cases (almost 80% in this specific example), thus providing a remarkably well-calibrated phylogeny of a character-rich clade of ubiquitous marine benthic invertebrates.  相似文献   

9.
Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates.  相似文献   

10.
The bivalve clade Heterodonta encompasses more than half of the extant bivalve species and is presently considered a derived group of the modern bivalves (Newell 1965 ; Waller 1998 ). Heterodonta is subdivided into two major lineages, the hyperdiverse Euheterodonta and Archiheterodonta. The latter comprises four relatively small extant families: Astartidae, Carditidae, Condylocardiidae and Crassatellidae, whose relationships and internal phylogeny are poorly understood. We assessed the phylogeny of archiheterodont bivalves using a multilocus data set comprised of molecular sequence data from six loci (18S rRNA, 28S rRNA, cytochrome c oxidase subunit I, cytochrome b, internal transcribed spacer 2 and histone H3). Resultant data sets of ~4 Kb of concatenated molecular sequence data were analysed using probabilistic approaches (maximum likelihood and Bayesian inference) and parsimony direct optimization. We recovered strong support for the monophyly of Archiheterodonta, within which Astartidae is the sister group of Crassatellidae, and these two constitute the sister clade of Carditidae, which is paraphyletic with respect to Condylocardiidae. The relationships among the constituent species groups were evaluated in the context of the archiheterodont fossil record through the estimation of divergence times. Diversification times of archiheterodont families were congruent with bounded estimates of origins based on palaeontological data: Archiheterodonta diversified during the Devonian, 373.1 Ma (95% highest posterior density interval [HPD] 325.8–428.2); Crassatelloidea around the Carboniferous, 330.1 Ma (95% HPD 291.0–372.7); Crassatellidae around the Triassic, 224.0 (95% HPD 140.6–320.2); Astartidae around the Permian, 288.2 Ma (95% HPD 269.2–307.3); and Carditoidea around the Jurassic, 178.8 Ma (95% HPD 120.9–228.3).  相似文献   

11.

Background  

Recent advances in DNA sequencing and computation offer the opportunity for reliable estimates of divergence times between organisms based on molecular data. Bayesian estimations of divergence times that do not assume the molecular clock use time constraints at multiple nodes, usually based on the fossil records, as major boundary conditions. However, the fossil records of bony fishes may not adequately provide effective time constraints at multiple nodes. We explored an alternative source of time constraints in teleostean phylogeny by evaluating a biogeographic hypothesis concerning freshwater fishes from the family Cichlidae (Perciformes: Labroidei).  相似文献   

12.
The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearance of a lineage toward the recent causing most objective calibration selection approaches to erroneously exclude appropriate calibrations or to incorporate multiple calibrations that are too young to accurately represent the divergence times of target lineages. Using turtles as a case study, we develop a Bayesian extension to the fossil selection approach developed by Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibrations points. Am. Nat. 171:726-742) that takes into account this taphonomic bias. Our method has the advantage of identifying calibrations that may bias age estimates to be too recent while incorporating uncertainty in phylogenetic parameter estimates such as tree topology and branch lengths. Additionally, this method is easily adapted to assess the consistency of potential calibrations to any one calibration in the candidate pool.  相似文献   

13.
One of the central topics in evolutionary biology is understanding the processes responsible for phenotypic diversification related to ecological factors. New World monkeys are an excellent reference system to investigate processes of diversification at macroevolutionary scales. Here, we investigate the cranial shape diversification related to body size and ecology during the phylogenetic branching process of platyrrhines. To investigate this diversification, we used geometric morphometric techniques, a molecular phylogenetic tree, ecological data and phylogenetic comparative methods. Our statistical analyses demonstrated that the phylogenetic branching process is the most important dimension to understand cranial shape variation among extant platyrrhines and suggested that the main shape divergence among the four principal platyrrhine clades probably occurred during the initial branching process. The phylogenetic conservatism, which is the retention of ancestral traits over time within the four principal platyrrhine clades, could be the most important characteristic of platyrrhine cranial shape diversification. Different factors might have driven early shape divergence and posterior relative conservatism, including genetic drift, stabilizing selection, genetic constraints owing to pleiotropy, developmental or functional constraint, lack of genetic variation, among others. Understanding the processes driving the diversification among platyrrhines will probably require further palaeontological, phylogenetic and comparative studies.  相似文献   

14.
? Premise of the study: It has been 8 years since the last comprehensive analysis of divergence times across the angiosperms. Given recent methodological improvements in estimating divergence times, refined understanding of relationships among major angiosperm lineages, and the immense interest in using large angiosperm phylogenies to investigate questions in ecology and comparative biology, new estimates of the ages of the major clades are badly needed. Improved estimations of divergence times will concomitantly improve our understanding of both the evolutionary history of the angiosperms and the patterns and processes that have led to this highly diverse clade. ? Methods: We simultaneously estimated the age of the angiosperms and the divergence times of key angiosperm lineages, using 36 calibration points for 567 taxa and a "relaxed clock" methodology that does not assume any correlation between rates, thus allowing for lineage-specific rate heterogeneity. ? Key results: Based on the analysis for which we set fossils to fit lognormal priors, we obtained an estimated age of the angiosperms of 167-199 Ma and the following age estimates for major angiosperm clades: Mesangiospermae (139-156 Ma); Gunneridae (109-139 Ma); Rosidae (108-121 Ma); Asteridae (101-119 Ma). ? Conclusions: With the exception of the age of the angiosperms themselves, these age estimates are generally younger than other recent molecular estimates and very close to dates inferred from the fossil record. We also provide dates for all major angiosperm clades (including 45 orders and 335 families [208 stem group age only, 127 both stem and crown group ages], sensu APG III). Our analyses provide a new comprehensive source of reference dates for major angiosperm clades that we hope will be of broad utility.  相似文献   

15.
16.
The estimation of a robust phylogeny is a necessary first step in understanding the biological diversification of the platyrrhines. Although the most recent phylogenies are generally robust, they differ from one another in the relationship between Aotus and other genera as well as in the relationship between Pitheciidae and other families. Here, we used coding and non-coding sequences to infer the species tree and embedded gene trees of the platyrrhine genera using the Bayesian Markov chain Monte Carlo method for the multispecies coalescent (?BEAST) for the first time and to compared the results with those of a Bayesian concatenated phylogenetic analysis. Our species tree, based on all available sequences, shows a closer phylogenetic relationship between Atelidae and Cebidae and a closer relationship between Aotus and the Cebidae clade. The posterior probabilities are lower for these conflictive tree nodes compared to those in the concatenated analysis; this finding could be explained by some gene trees showing no concordant topologies between Aotus and the other genera. Moreover, the topology of our species tree also differs from the findings of previous molecular and morphological studies regarding the position of Aotus. The existence of discrepancies between morphological data, gene trees and the species tree is widely reported and can be related to processes such as incomplete lineage sorting or selection. Although these processes are common in species trees with low divergence, they can also occur in species trees with deep and rapid divergence. The sources of the inconsistency of morphological and molecular traits with the species tree could be a main focus of further research on platyrrhines.  相似文献   

17.
The recently extinct large-bodied New World monkey Protopithecus brasiliensis Lund 1836 was named based on a distal humerus and proximal femur found in the Lagoa Santa cave system in the southeastern Brazilian state of Minas Gerais. These bones are from an animal about twice the size of the largest extant platyrrhines. One hundred and seventy-five years later, a nearly complete skeleton was discovered in the Toca da Boa Vista caves in the neighboring state of Bahia and was allocated to the same taxon as it was the first platyrrhine fossil of comparable size found since the originals. Our detailed study of the equivalent elements, however, reveals important morphological differences that do not correspond to intraspecific variation as we know it in related platyrrhine taxa. The presence of both an expanded brachioradialis flange on the humerus and gluteal tuberosity on the femur of the Bahian skeleton distinguishes it from the Lagoa Santa fossil as well as from all other platyrrhines. Further cranial and postcranial evidence suggests a closer relationship of the former with the alouattine Alouatta, while the limited Lund material fits more comfortably with the ateline clade. Therefore, we propose to limit P. brasiliensis Lund to the distal humerus and proximal femur from Lagoa Santa and erect a new genus and species for the skeleton from Toca da Boa Vista. Cartelles coimbrafilhoi was a large-bodied frugivore with a relatively small brain and diverse locomotor repertoire including both suspension and climbing that expands the range of platyrrhine biodiversity beyond the dimensions of the living neotropical primates.  相似文献   

18.
The insect order Diptera, the true flies, contains one of the four largest Mesozoic insect radiations within its suborder Brachycera. Estimates of phylogenetic relationships and divergence dates among the major brachyceran lineages have been problematic or vague because of a lack of consistent evidence and the rarity of well-preserved fossils. Here, we combine new evidence from nucleotide sequence data, morphological reinterpretations, and fossils to improve estimates of brachyceran evolutionary relationships and ages. The 28S ribosomal DNA (rDNA) gene was sequenced for a broad diversity of taxa, and the data were combined with recently published morphological scorings for a parsimony-based phylogenetic analysis. The phylogenetic topology inferred from the combined 28S rDNA and morphology data set supports brachyceran monophyly and the monophyly of the four major brachyceran infraorders and suggests relationships largely consistent with previous classifications. Weak support was found for a basal brachyceran clade comprising the infraorders Stratiomyomorpha (soldier flies and relatives), Xylophagomorpha (xylophagid flies), and Tabanomorpha (horse flies, snipe flies, and relatives). This topology and similar alternative arrangements were used to obtain Bayesian estimates of divergence times, both with and without the assumption of a constant evolutionary rate. The estimated times were relatively robust to the choice of prior distributions. Divergence times based on the 28S rDNA and several fossil constraints indicate that the Brachycera originated in the late Triassic or earliest Mesozoic and that all major lower brachyceran fly lineages had near contemporaneous origins in the mid-Jurassic prior to the origin of flowering plants (angiosperms). This study provides increased resolution of brachyceran phylogeny, and our revised estimates of fly ages should improve the temporal context of evolutionary inferences and genomic comparisons between fly model organisms.  相似文献   

19.
It has been suggested that the degree of ecological diversity that characterizes a primate community correlates positively with both its phylogenetic richness and the time since the members of that community diverged (Fleagle and Reed in Primate communities. Cambridge University Press, New York, pp 92–115, 1999). It is therefore questionable whether or not a community with a relatively recent divergence time but high phylogenetic richness would be as ecologically variable as a community with similar phylogenetic richness but a more distant divergence time. To address this question, the ecological diversity of a fossil primate community from La Venta, Colombia, a Middle Miocene platyrrhine community with phylogenetic diversity comparable with extant platyrrhine communities but a relatively short time since divergence, was compared with that of modern Neotropical primate communities. Shearing quotients and molar lengths, which together are reliable indicators of diet, for both fossil and extant species were plotted against each other to describe the dietary “ecospace” occupied by each community. Community diversity was calculated as the area of the minimum convex polygon encompassing all community members. The diversity of the fossil community was then compared with that of extant communities to test whether the fossil community was less diverse than extant communities while taking phylogenetic richness into account. Results indicate that the La Ventan community was not significantly less ecologically diverse than modern communities, supporting the idea that ecological diversification occurred along with phylogenetic diversification early in platyrrhine evolution.  相似文献   

20.
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号