首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inflammasome activation permits processing of interleukins (IL)-1β and 18 and elicits cell death (pyroptosis). Whether these responses are independently licensed or are “hard-wired” consequences of caspase-1 (casp1) activity has not been clear. Here, we show that that each of these responses is independently regulated following activation of NLRP3 inflammasomes by a “non-canonical” stimulus, the secreted Listeria monocytogenes (Lm) p60 protein. Primed murine dendritic cells (DCs) responded to p60 stimulation with reactive oxygen species (ROS) production and secretion of IL-1β and IL-18 but not pyroptosis. Inhibitors of ROS production inhibited secretion of IL-1β, but did not impair IL-18 secretion. Furthermore, DCs from caspase-11 (casp11)-deficient 129S6 mice failed to secrete IL-1β in response to p60 but were fully responsive for IL-18 secretion. These findings reveal that there are distinct licensing requirements for processing of IL-18 versus IL-1β by NLRP3 inflammasomes.  相似文献   

3.
4.

Background

Interleukin-1β (IL-1β) is important for host resistance against Mycobacterium tuberculosis (Mtb) infections. The response of the dendritic cell inflammasome during Mtb infections has not been investigated in detail.

Methodology/Principal Findings

Here we show that Mtb infection of bone marrow-derived dendritic cells (BMDCs) induces IL-1β secretion and that this induction is dependent upon the presence of functional ASC and NLRP3 but not NLRC4 or NOD2. The analysis of cell death induction in BMDCs derived from these knock-out mice revealed the important induction of host cell apoptosis but not necrosis, pyroptosis or pyronecrosis. Furthermore, NLRP3 inflammasome activation and apoptosis induction were both reduced in BMDCs infected with the esxA deletion mutant of Mtb demonstrating the importance of a functional ESX-1 secretion system. Surprisingly, caspase-1/11-deficient BMDCs still secreted residual levels of IL-1βand IL-18 upon Mtb infection which was abolished in cells infected with the esxA Mtb mutant.

Conclusion

Altogether we demonstrate the partially caspase-1/11-independent, but NLRP3- and ASC- dependent IL-1β secretion in Mtb-infected BMDCs. These findings point towards a potential role of DCs in the host innate immune response to mycobacterial infections via their capacity to induce IL-1β and IL-18 secretion.  相似文献   

5.
Interleukin-1β (IL-1β) is a pleiotropic cytokine promoting inflammation, angiogenesis, and tissue remodeling as well as regulation of immune responses. Although IL-1β contributes to growth and metastatic spread in experimental and human cancers, the molecular mechanisms regulating the conversion of the inactive IL-1β precursor to a secreted and active cytokine remains unclear. Here we demonstrate that NALP3 inflammasome is constitutively assembled and activated with cleavage of caspase-1 in human melanoma cells. Late stage human melanoma cells spontaneously secrete active IL-1β via constitutive activation of the NALP3 inflammasome and IL-1 receptor signaling, exhibiting a feature of autoinflammatory diseases. Unlike human blood monocytes, these melanoma cells require no exogenous stimulation. In contrast, NALP3 functionality in intermediate stage melanoma cells requires activation of the IL-1 receptor to secrete active IL-1β; cells from an early stage of melanoma require stimulation of the IL-1 receptor plus the co-stimulant muramyl dipeptide. The spontaneous secretion of IL-1β from melanoma cells was reduced by inhibition of caspase-1 or the use of small interfering RNA directed against ASC. Supernatants from melanoma cell cultures enhanced macrophage chemotaxis and promoted in vitro angiogenesis, both prevented by pretreating melanoma cells with inhibitors of caspases-1 and -5 or IL-1 receptor blockade. These findings implicate IL-1-mediated autoinflammation as contributing to the development and progression of human melanoma and suggest that inhibiting the inflammasome pathway or reducing IL-1 activity can be a therapeutic option for melanoma patients.  相似文献   

6.
7.
8.
9.
10.
Carl van Walraven 《CMAJ》2013,185(16):E755-E762

Background:

Changes in the long-term survival of people admitted to hospital is unknown. This study examined trends in 1-year survival of patients admitted to hospital adjusted for improved survival in the general population.

Methods:

One-year survival after admission to hospital was determined for all adults admitted to hospital in Ontario in 1994, 1999, 2004, or 2009 by linking to vital statistics datasets. Annual survival in the general population was determined from life tables for Ontario.

Results:

Between 1994 and 2009, hospital use decreased (from 8.8% to 6.3% of the general adult population per year), whereas crude 1-year mortality among people with hospital admissions increased (from 9.2% to 11.6%). During this time, patients in hospital became significantly older (median age increased from 51 to 58 yr) and sicker (the proportion with a Charlson comorbidity index score of 0 decreased from 68.2% to 60.0%), and were more acutely ill on admission (elective admissions decreased from 47.4% to 42.0%; proportion brought to hospital by ambulance increased from 16.1% to 24.8%). Compared with 1994, the adjusted odds ratio (OR) for death at 1 year in 2009 was 0.78 (95% confidence interval [CI] 0.77–0.79). However, 1-year risk of death in the general population decreased by 24% during the same time. After adjusting for improved survival in the general population, risk of death at 1 year for people admitted to hospital remained significantly lower in 2009 than in 1994 (adjusted relative excess risk 0.81, 95% CI 0.80–0.82).

Interpretation:

After accounting for both the increased burden of patient sickness and improved survival in the general population, 1-year survival for people admitted to hospital increased significantly from 1994 to 2009. The reasons for this improvement cannot be determined from these data. Hospitals have a special place in most health care systems. Hospital staff care for the people with the most serious illnesses and the most vulnerable. They are frequently the location of many life-defining moments — including birth, surgery, acute medical illness and death — of many people and their families. Hospitals serve as a focus in the training of most physicians. In addition, they consume a considerable proportion of health care expenditures worldwide. 1 Given the prominence of hospitals in health care systems, measuring outcomes related to hospital care is important. In particular, the measurement of trends for outcomes of hospital care can help us to infer whether the care provided to hospital patients is improving. Previous such studies have focused on survival trends for specific diseases or patients who received treatment in specific departments. 2 12 None of these studies have adjusted for survival trends in the general population, the adjustment for which is important to determine whether changes in survival of patients in hospital merely reflect changes in the overall population. In this study, whether or not patient outcomes have changed over time was determined by examining trends in 1-year survival in all patients admitted to hospital, adjusting for improved survival in the general population.  相似文献   

11.
Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase.  相似文献   

12.
The principal regulator of parathyroid hormone (PTH) secretion is ionized calcium, but other factors are also known to modulate PTH secretion, such as vitamin D, estrogen, and recently inorganic phosphate. Interleukin-1 (IL-1) possesses a wide variety of biological activities and is produced by leukocytes as well as by various other cells including cells from endocrine tissues and might play a role as a paracrine factor in the control of PTH secretion. We investigated the effectin vitroof IL-1β on PTH release, PTHmRNA and the mRNA for the extracellular calcium-sensing receptor (CaR) levels in preparations of bovine parathyroid cells. PTH secretion from cultured parathyroid tissue slices was significantly inhibited in a medium containing IL-1β at a concentration of 2000 pg/ml (PTH in % of control: 63.5 ± 5.3), n=10 (p<0.01). The inhibitory effect of IL-1β was not found in preparations of dispersed cells. The inhibitory effect of IL-1β could be counteracted by the IL-1 receptor antagonist (IL-1ra), indicating that the inhibitory effect was mediated through the specific IL-1 receptor on the parathyroid cells. IL-1β (2000 pg/ml) up-regulated CaRmRNA levels to 180% of control, whereas no change in PTHmRNA was found. IL-1ra abolished the upregulating effect of IL-1β on the CaRmRNA. This study demonstrates a direct effectin vitroof IL-1β on PTH secretion from bovine parathyroid glands, an effect which may be mediated at least in part through the specific IL-1 receptor causing an upregulation of the calcium-sensing receptor mRNA. IL-1 might therefore play a role as a auto- and/or paracrine factor in the regulation of the PTH secretion.  相似文献   

13.
Inflammation under sterile conditions is a key event in autoimmunity and following trauma. Hyaluronan, a glycosaminoglycan released from the extracellular matrix after injury, acts as an endogenous signal of trauma and can trigger chemokine release in injured tissue. Here, we investigated whether NLRP3/cryopyrin, a component of the inflammasome, participates in the inflammatory response to injury or the cytokine response to hyaluronan. Mice with a targeted deletion in cryopyrin showed a normal increase in Cxcl2 in response to sterile injuries but had decreased inflammation and release of interleukin-1β (IL-1β). Similarly, the addition of hyaluronan to macrophages derived from cryopyrin-deficient mice increased release of Cxcl2 but did not increase IL-1β release. To define the mechanism of hyaluronan-mediated activation of cryopyrin, elements of the hyaluronan recognition process were studied in detail. IL-1β release was inhibited in peritoneal macrophages derived from CD44-deficient mice, in an MH-S macrophage cell line treated with antibodies to CD44, or by inhibitors of lysosome function. The requirement for CD44 binding and hyaluronan internalization could be bypassed by intracellular administration of hyaluronan oligosaccharides (10–18-mer) in lipopolysaccharide-primed macrophages. Therefore, the action of CD44 and subsequent hyaluronan catabolism trigger the intracellular cryopyrin → IL-1β pathway. These findings support the hypothesis that hyaluronan works through IL-1β and the cryopyrin system to signal sterile inflammation.Inflammation, as defined by changes in vascular permeability and leukocyte recruitment, is an essential step for the control of microbial invasion. Specific microbial products trigger this process through a diverse array of innate immune pattern recognition receptors. However, an inflammatory response independent of infection is also an important process for maintenance of biological homeostasis. For example, normal wound healing requires a controlled inflammatory response to enable the recruitment of monocytes and the release of growth factors required for repair. This response can occur in the absence of microbial stimuli. Furthermore, inflammation and the release of proinflammatory mediators is also associated with many diseases such as rheumatoid arthritis and Crohn disease (1). These diseases are not well understood in terms of their triggers but rather are described by the subsequent release of proinflammatory mediators. Identification of the triggers of sterile inflammation represents an important goal with immediate diagnostic and therapeutic significance.Recent work has begun to elucidate pathways of inflammation that occur in the absence of microbial stimuli. Stress signals such as heat-shock proteins, intracellular components of necrotic cells not normally seen by immune cells, and components of the extracellular matrix have all been implicated as endogenous triggers of injury (24). Among this group is the glycosaminoglycan hyaluronan (HA),6 an important structural component of the extracellular matrix that is also a common component of bacterial surfaces. HA is synthesized at the cell surface and typically exists as a high molecular mass polymer greater than 106 Da and composed of repeating disaccharide units of N-acetylglucosamine and glucuronic acid (5, 6). Unlike other glycosaminoglycans such as heparan sulfate or chondroitin sulfates that encode specific activity by use of a diverse disaccharide sequence, HA is not sulfated or epimerized, and only changes in HA size, concentration, and location affect function.We have previously developed murine models of sterile injury to identify the innate elements that recognize and mediate sterile inflammation (7). Our results demonstrated that (a) the initiation of a sterile intrinsic inflammatory process is dependent on TLR4 activation, (b) sterile injury induces HA accumulation at the injured site, and (c) sterile intrinsic inflammation resembles signaling events that are activated by HA. Furthermore, we have defined a novel alternative recognition complex for HA that involves TLR4, MD-2, and CD44 (7). Taken together with other work associating HA and innate pattern recognition (4, 810), these observations have provided new insight into mechanisms responsible for sterile inflammation.Recently, the NLR (nucleotide-binding domain and leucine rich repeat-containing) family has been extensively analyzed as a group of intracellular pattern recognition receptors (11). NLRs have a leucine-rich repeat that recognizes pathogen-associated molecular patterns including bacterial cell wall components and viral nucleic acids. NOD2 and NLR family, pyrin containing 3 (NLRP3)/cryopyrin are two of the best characterized NLRs. NOD2 recognizes the bacterial peptidoglycan-derived molecule muramyl dipeptide and activates the NF-κB pathway to induce inflammatory responses (12). Mutations of the NOD2 gene were identified in individuals with chronic inflammatory disorders such as Crohn disease (13, 14) and Blau syndrome (15). Mouse knockin mutants of NOD2, which have the same mutation in NOD2 as human patients with Crohn disease, showed elevated proinflammatory cytokines following muramyl dipeptide challenge or dextran sodium sulfate-induced bowel inflammation (16). NLRP3, also known as cyropyrin, CIAS1, NALP3, PYPAF1, forms an “inflammasome” with ASC (apoptosis-associated speck-like protein containing a CARD) and caspase-1 to convert pro-IL-1β to active IL-1β (17). Mutations in NLRP3 were identified in individuals with familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome, and neonatal onset multisystem inflammatory disease (1820). These individuals have recurrent or chronic inflammatory symptoms, including fever, arthritis, and a urticaria-like eruption characterized by neutrophilic infiltration. In FCAS, symptoms can be elicited by cold provocation by a mechanism that appears to be mediated through the skin (15, 21).Because disorders associated with mutations in NLRP3 are examples of inflammation under sterile conditions and HA has been shown to be a trigger of sterile inflammation, we sought to further understand the mechanism of the response to HA by examining the role of cryopyrin during injury and after exposure to HA. Our results show that cryopyrin and IL-1β are integral to sterile inflammation and the response to HA. These observations provide new insight into the function of HA as a “danger signal” of injury.  相似文献   

14.
Alzheimer disease β-amyloid (Aβ) peptides are generated via sequential proteolysis of amyloid precursor protein (APP) by BACE1 and γ-secretase. A subset of BACE1 localizes to cholesterol-rich membrane microdomains, termed lipid rafts. BACE1 processing in raft microdomains of cultured cells and neurons was characterized in previous studies by disrupting the integrity of lipid rafts by cholesterol depletion. These studies found either inhibition or elevation of Aβ production depending on the extent of cholesterol depletion, generating controversy. The intricate interplay between cholesterol levels, APP trafficking, and BACE1 processing is not clearly understood because cholesterol depletion has pleiotropic effects on Golgi morphology, vesicular trafficking, and membrane bulk fluidity. In this study, we used an alternate strategy to explore the function of BACE1 in membrane microdomains without altering the cellular cholesterol level. We demonstrate that BACE1 undergoes S-palmitoylation at four Cys residues at the junction of transmembrane and cytosolic domains, and Ala substitution at these four residues is sufficient to displace BACE1 from lipid rafts. Analysis of wild type and mutant BACE1 expressed in BACE1 null fibroblasts and neuroblastoma cells revealed that S-palmitoylation neither contributes to protein stability nor subcellular localization of BACE1. Surprisingly, non-raft localization of palmitoylation-deficient BACE1 did not have discernible influence on BACE1 processing of APP or secretion of Aβ. These results indicate that post-translational S-palmitoylation of BACE1 is not required for APP processing, and that BACE1 can efficiently cleave APP in both raft and non-raft microdomains.Alzheimer disease-associated β-amyloid (Aβ)3 peptides are derived from the sequential proteolysis of β-amyloid precursor protein (APP) by β- and γ-secretases. The major β-secretase is an aspartyl protease, termed BACE1 (β-site APP-cleaving enzyme 1) (14). BACE1 cleaves APP within the extracellular domain of APP, generating the N terminus of Aβ. In addition, BACE1 also cleaves to a lesser extent within the Aβ domain between Tyr10 and Glu11 (β′-cleavage site). Processing of APP at these sites results in the shedding/secretion of the large ectodomain (sAPPβ) and generating membrane-tethered C-terminal fragments +1 and +11 (β-CTF) (5). The multimeric γ-secretase cleaves at multiple sites within the transmembrane domain of β-CTF, generating C-terminal heterogeneous Aβ peptides (ranging in length between 38 and 43 residues) that are secreted, as well as cytosolic APP intracellular domains (6). In addition to BACE1, APP can be cleaved by α-secretase within the Aβ domain between Lys16 and Leu17, releasing sAPPα and generating α-CTF. γ-Secretase cleavage of α-CTF generates N-terminal truncated Aβ, termed p3.Genetic ablation of BACE1 completely abolishes Aβ production, establishing BACE1 as the major neuronal enzyme responsible for initiating amyloidogenic processing of APP (4, 7). Interestingly, both the expression and activity of BACE1 is specifically elevated in neurons adjacent to senile plaques in brains of individuals with Alzheimer disease (8). In the past few years additional substrates of BACE1 have been identified that include APP homologues APLP1 and APLP2 (9), P-selectin glycoprotein ligand-1 (10), β-galactoside α2,6-sialyltransferase (11), low-density lipoprotein receptor-related protein (12), β-subunits of voltage-gated sodium channels (13), and neuregulin-1 (14, 15), thus extending the physiological function of BACE1 beyond Alzheimer disease pathogenesis.BACE1 is a type I transmembrane protein with a long extracellular domain harboring a catalytic domain and a short cytoplasmic tail. BACE1 is synthesized as a proenzyme, which undergoes post-translational modifications that include removal of a pro-domain by a furin-like protease, N-glycosylation, phosphorylation, S-palmitoylation, and acetylation, during the transit in the secretory pathway (1620). In non-neuronal cells the majority of BACE1 localizes to late Golgi/TGN and endosomes at steady-state and a fraction of BACE1 also cycles between the cell surface and endosomes (21). The steady-state localization of BACE1 is consistent with the acidic pH optimum of BACE1 in vitro, and BACE1 cleavage of APP is observed in the Golgi apparatus, TGN, and endosomes (2225). BACE1 endocytosis and recycling are mediated by the GGA family of adaptors binding to a dileucine motif (496DISLL) in its cytoplasmic tail (21, 2631). Phosphorylation at Ser498 within this motif modulates GGA-dependent retrograde transport of BACE1 from endosomes to TGN (21, 2631).Over the years, a functional relationship between cellular cholesterol level and Aβ production has been uncovered, raising the intriguing possibility that cholesterol levels may determine the balance between amyloidogenic and non-amyloidogenic processing of APP (3234). Furthermore, several lines of evidence from in vitro and in vivo studies indicate that cholesterol- and sphingolipid-rich membrane microdomains, termed lipid rafts, might be the critical link between cholesterol levels and amyloidogenic processing of APP. Lipid rafts function in the trafficking of proteins in the secretory and endocytic pathways in epithelial cells and neurons, and participate in a number of important biological functions (35). BACE1 undergoes S-palmitoylation (19), a reversible post-translational modification responsible for targeting a variety of peripheral and integral membrane proteins to lipid rafts (36). Indeed, a significant fraction of BACE1 is localized in lipid raft microdomains in a cholesterol-dependent manner, and addition of glycosylphosphatidylinositol (GPI) anchor to target BACE1 exclusively to lipid rafts increases APP processing at the β-cleavage site (37, 38). Antibody-mediated co-patching of cell surface APP and BACE1 has provided further evidence for BACE1 processing of APP in raft microdomains (33, 39). Components of the γ-secretase complex also associate with detergent-resistant membrane (DRM) fractions enriched in raft markers such as caveolin, flotillin, PrP, and ganglioside GM1 (40). The above findings suggest a model whereby APP is sequentially processed by BACE1 and γ-secretase in lipid rafts.Despite the accumulating evidence, cleavage of APP by BACE1 in non-raft membrane regions cannot be unambiguously ruled out because of the paucity of full-length APP (APP FL) and BACE1 in DRM isolated from adult brain and cultured cells (41). Moreover, it was recently reported that moderate reduction of cholesterol (<25%) displaces BACE1 from raft domains, and increases BACE1 processing by promoting the membrane proximity of BACE1 and APP in non-raft domains (34). Nevertheless, this study also found that BACE1 processing of APP is inhibited with further loss of cholesterol (>35%), consistent with earlier studies (32, 33). Nevertheless, given the pleiotropic effects of cholesterol depletion on membrane properties and vesicular trafficking of secretory and endocytic proteins (4247), unequivocal conclusions regarding BACE1 processing of APP in lipid rafts cannot be reached based on cholesterol depletion studies.In this study, we explored the function of BACE1 in lipid raft microdomains without manipulating cellular cholesterol levels. In addition to the previously reported S-palmitoylation sites (Cys478/Cys482/Cys485) within the cytosolic tail of BACE1 (19), we have identified a fourth site (Cys474) within the transmembrane domain of BACE1 that undergoes S-palmitoylation. A BACE1 mutant with Ala substitution of all four Cys residues (BACE1-4C/A) fails to associate with DRM in cultured cells, but is not otherwise different from wtBACE1 in terms of protein stability, maturation, or subcellular localization. Surprisingly, APP processing and Aβ generation were unaffected in cells stably expressing the BACE1-4C/A mutant. Finally, we observed an increase in the levels of APP CTFs in detergent-soluble fractions of BACE1-4C/A as compared with wtBACE1 cells. Thus, our data collectively indicate a non-obligatory role of S-palmitoylation and lipid raft localization of BACE1 in amyloidogenic processing of APP.  相似文献   

15.
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.  相似文献   

16.
The DSM-IV major depression "bereavement exclusion" (BE), which recognizes that depressive symptoms are sometimes normal in recently bereaved individuals, is proposed for elimination in DSM-5. Evidence cited for the BE's invalidity comes from two 2007 reviews purporting to show that bereavement-related depression is similar to other depression across various validators, and a 2010 review of subsequent research. We examined whether the 2007 and 2010 reviews and subsequent relevant literature support the BE's invalidity. Findings were: a) studies included in the 2007 reviews sampled bereavement-related depression groups most of whom were not BE-excluded, making them irrelevant for evaluating BE validity; b) three subsequent studies cited by the 2010 review as supporting BE elimination did examine BE-excluded cases but were in fact inconclusive; and c) two more recent articles comparing recurrence of BE-excluded and other major depressive disorder cases both support the BE's validity. We conclude that the claimed evidence for the BE's invalidity does not exist. The evidence in fact supports the BE's validity and its retention in DSM-5 to prevent false positive diagnoses. We suggest some improvements to increase validity and mitigate risk of false negatives.  相似文献   

17.
18.
The glycosylation of glycoproteins and glycolipids is important for central nervous system development and function. Although the roles of several carbohydrate epitopes in the central nervous system, including polysialic acid, the human natural killer-1 (HNK-1) carbohydrate, α2,3-sialic acid, and oligomannosides, have been investigated, those of the glycan backbone structures, such as Galβ1-4GlcNAc and Galβ1-3GlcNAc, are not fully examined. Here we report the generation of mice deficient in β4-galactosyltransferase-II (β4GalT-II). This galactosyltransferase transfers Gal from UDP-Gal to a nonreducing terminal GlcNAc to synthesize the Gal β1-4GlcNAc structure, and it is strongly expressed in the central nervous system. In behavioral tests, the β4GalT-II-/- mice showed normal spontaneous activity in a novel environment, but impaired spatial learning/memory and motor coordination/learning. Immunohistochemistry showed that the amount of HNK-1 carbohydrate was markedly decreased in the brain of β4GalT-II-/- mice, whereas the expression of polysialic acid was not affected. Furthermore, mice deficient in glucuronyltransferase (GlcAT-P), which is responsible for the biosynthesis of the HNK-1 carbohydrate, also showed impaired spatial learning/memory as described in our previous report, although their motor coordination/learning was normal as shown in this study. Histological examination showed abnormal alignment and reduced number of Purkinje cells in the cerebellum of β4GalT-II-/- mice. These results suggest that the Galβ1-4GlcNAc structure in the HNK-1 carbohydrate is mainly synthesized by β4GalT-II and that the glycans synthesized by β4GalT-II have essential roles in higher brain functions, including some that are HNK-1-dependent and some that are not.The glycosylation of glycoproteins, proteoglycans, and glycolipids is important for their biological activities, stability, transport, and clearance from circulation, and cell-surface glycans participate in cell-cell and cell-extracellular matrix interactions. In the central nervous system, several specific carbohydrate epitopes, including polysialic acid (PSA),3 the human natural killer-1 (HNK-1) carbohydrate, α2,3-sialic acid, and oligomannosides play indispensable roles in neuronal generation, cell migration, axonal outgrowth, and synaptic plasticity (1). Functional analyses of the glycan backbone structures, like lactosamine core (Galβ1-4GlcNAc), neolactosamine core (Galβ1-3GlcNAc), and polylactosamine (Galβ1-4GlcNAcβ1-3) have been carried out using gene-deficient mice in β4-galactosyltransferase-I (β4GalT-I) (2, 3), β4GalT-V (4), β3-N-acetylglucosaminyl-transferase-II (β3GnT-II) (5), β3GnT-III (Core1-β3GnT) (6), β3GnT-V (7), and Core2GnT (8). However, the roles of these glycan backbone structures in the nervous system have not been examined except the olfactory sensory system (9).β4GalTs synthesize the Galβ1-4GlcNAc structure via the β4-galactosylation of glycoproteins and glycolipids; the β4GalTs transfer galactose (Gal) from UDP-Gal to a nonreducing terminal N-acetylglucosamine (GlcNAc) of N- and O-glycans with a β-1,4-linkage. The β4GalT family has seven members (β4GalT-I to VII), of which at least five have similar Galβ1-4GlcNAc-synthesizing activities (10, 11). Each β4GalT has a tissue-specific expression pattern and substrate specificity with overlapping, suggesting each β4GalT has its own biological role as well as redundant functions. β4GalT-I and β4GalT-II share the highest identity (52% at the amino acid level) among the β4GalTs (12), suggesting these two galactosyltransferases can compensate for each other. β4GalT-I is strongly and ubiquitously expressed in various non-neural tissues, whereas β4GalT-II is strongly expressed in neural tissues (13, 14). Indeed, the β4GalT activity in the brain of β4GalT-I-deficient (β4GalT-I-/-) mice remains as high as 65% of that of wild-type mice, and the expression levels of PSA and the HNK-1 carbohydrate in the brain of these mice are normal (15). These results suggest β4GalTs other than β4GalT-I, like β4GalT-II, are important in the nervous system.Among the β4GalT family members, only β4GalT-I-/- mice have been examined extensively; this was done by us and another group. We reported that glycans synthesized by β4GalT-I play various roles in epithelial cell growth and differentiation, inflammatory responses, skin wound healing, and IgA nephropathy development (2, 16-18). Another group reported that glycans synthesized by β4GalT-I are involved in anterior pituitary hormone function and in fertilization (3, 19). However, no other nervous system deficits have been reported in these mice, and the role of the β4-galactosylation of glycoproteins and glycolipids in the nervous system has not been fully examined.In this study, we generated β4GalT-II-/- mice and examined them for behavioral abnormalities and biochemical and histological changes in the central nervous system. β4GalT-II-/- mice were impaired in spatial learning/memory and motor coordination/learning. The amount of HNK-1 carbohydrate was markedly decreased in the β4GalT-II-/- brain, but PSA expression was not affected. These results suggest that the Galβ1-4GlcNAc structure in the HNK-1 carbohydrate is mainly synthesized by β4GalT-II and that glycans synthesized by β4GalT-II have essential roles in higher brain functions, including ones that are HNK-1 carbohydrate-dependent and ones that are independent of HNK-1.  相似文献   

19.
20.
The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号