首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonalcoholic steatohepatitis (NASH) is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF)-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1), a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1−/− mice were fed a control choline-supplemented amino acid-defined (CSAA) diet or a choline-deficient amino acid-defined (CDAA) diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1−/− mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1−/− mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1−/− mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1−/− mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1−/− mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1−/− mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1−/− mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.  相似文献   

2.
3.
Endoplasmic reticulum (ER) stress–induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-α (ER oxidase 1 α). In ER-stressed cells, ERO1-α is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-α suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-α or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-α in Chop−/− macrophages restores ER stress–induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop−/− mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-α–IP3R pathway.  相似文献   

4.
5.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   

6.
The importance of Galectin-3 (Gal-3) in obesity-associated liver pathology is incompletely defined. To dissect the role of Gal-3 in fibrotic nonalcoholic steatohepatitis (NASH), Gal-3-deficient (LGALS3−/−) and wild-type (LGALS3+/+) C57Bl/6 mice were placed on an obesogenic high fat diet (HFD, 60% kcal fat) or standard chow diet for 12 and 24 wks. Compared to WT mice, HFD-fed LGALS3−/− mice developed, in addition to increased visceral adiposity and diabetes, marked liver steatosis, which was accompanied with higher expression of hepatic PPAR-γ, Cd36, Abca-1 and FAS. However, as opposed to LGALS3−/− mice, hepatocellular damage, inflammation and fibrosis were more extensive in WT mice which had an elevated number of mature myeloid dendritic cells, proinflammatory CD11b+Ly6Chi monocytes/macrophages in liver, peripheral blood and bone marrow, and increased hepatic CCL2, F4/80, CD11c, TLR4, CD14, NLRP3 inflammasome, IL-1β and NADPH-oxidase enzymes mRNA expression. Thus, obesity-driven greater steatosis was uncoupled with attenuated fibrotic NASH in Gal-3-deficient mice. HFD-fed WT mice had a higher number of hepatocytes that strongly expressed IL-33 and hepatic CD11b+IL-13+ cells, increased levels of IL-33 and IL-13 and up-regulated IL-33, ST2 and IL-13 mRNA in liver compared with LGALS3−/− mice. IL-33 failed to induce ST2 upregulation and IL-13 production by LGALS3−/− peritoneal macrophages in vitro. Administration of IL-33 in vivo enhanced liver fibrosis in HFD-fed mice in both genotypes, albeit to a significantly lower extent in LGALS3−/− mice, which was associated with less numerous hepatic IL-13-expressing CD11b+ cells. The present study provides evidence of a novel role for Gal-3 in regulating IL-33-dependent liver fibrosis.  相似文献   

7.
The role of inducible nitric oxide synthase (iNOS) in the progression of fibrosis during nonalcoholic steatohepatitis remains to be elucidated. This study examined the role of iNOS in the progression of fibrosis during steatohepatitis by comparing iNOS knockout (iNOS−/−) and wild-type (iNOS+/+) mice that were fed a high-fat diet. Severe fatty metamorphosis developed in the liver of iNOS+/+ and iNOS−/− mice. Fibrotic changes were marked in iNOS−/− mice. Gelatin zymography showed that pro MMP-2 and pro MMP-9 protein expressions were more highly induced in iNOS+/+ mice than in iNOS−/− mice. Active forms of MMP-2 and MMP-9 were clearly present only in the liver tissue of iNOS+/+ mice. In situ zymography showed strong gelatinolytic activities in the liver tissue of iNOS+/+ mice, but only spotty activity in iNOS−/−mice. iNOS may attenuate the progression of liver fibrosis in steatohepatitis, in part by inducing MMP-2 and MMP-9 expression and augmenting their activity.  相似文献   

8.

Background

Chronic inflammation and oxidative stress play fundamental roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Previously, we reported that myeloperoxidase (MPO), an aggressive oxidant-generating neutrophil enzyme, is associated with NASH severity in man. We now investigated the hypothesis that MPO contributes to the development and progression of NASH.

Methodology

Low-density lipoprotein receptor-deficient mice with an MPO-deficient hematopoietic system (LDLR−/−/MPO−/−tp mice) were generated and compared with LDLR−/−/MPO+/+tp mice after induction of NASH by high-fat feeding.

Results

High-fat feeding caused a ∼4-fold induction of liver MPO in LDLR−/−/MPO+/+ mice which was associated with hepatic sequestration of MPO-positive neutrophils and high levels of nitrotyrosine, a marker of MPO activity. Importantly, LDLR−/−/MPO−/−tp mice displayed markedly reduced hepatic neutrophil and T-lymphocyte infiltration (p<0.05), and strong down regulation of pro-inflammatory genes such as TNF-α and IL-6 (p<0.05, p<0.01) in comparison with LDLR−/−/MPO+/+tp mice. Next to the generalized reduction of inflammation, liver cholesterol accumulation was significantly diminished in LDLR−/−/MPO−/−tp mice (p = 0.01). Moreover, MPO deficiency appeared to attenuate the development of hepatic fibrosis as evident from reduced hydroxyproline levels (p<0.01). Interestingly, visceral adipose tissue inflammation was markedly reduced in LDLR−/−/MPO−/−tp mice, with a complete lack of macrophage crown-like structures. In conclusion, MPO deficiency attenuates the development of NASH and diminishes adipose tissue inflammation in response to a high fat diet, supporting an important role for neutrophils in the pathogenesis of metabolic disease.  相似文献   

9.
The dual specific phosphatase, MAP kinase phosphatase-2 (MKP-2) has recently been demonstrated to negatively regulate macrophage arginase-1 expression, while at the same time to positively regulate iNOS expression. Consequently, MKP-2 is likely to play a significant role in the host interplay with intracellular pathogens. Here we demonstrate that MKP-2−/− mice on the C57BL/6 background have enhanced susceptibility compared with wild-type counterparts following infection with type-2 strains of Toxoplasma gondii as measured by increased parasite multiplication during acute infection, increased mortality from day 12 post-infection onwards and increased parasite burdens in the brain, day 30 post-infection. MKP-2−/− mice did not, however, demonstrate defective type-1 responses compared with MKP-2+/+ mice following infection although they did display significantly reduced serum nitrite levels and enhanced tissue arginase-1 expression. Early resistance to T. gondii in MKP-2+/+, but not MKP-2−/−, mice was nitric oxide (NO) dependent as infected MKP-2+/+, but not MKP-2−/− mice succumbed within 10 days post-infection with increased parasite burdens following treatment with the iNOS inhibitor L-NAME. Conversely, treatment of infected MKP-2−/− but not MKP-2+/+ mice with nor-NOHA increased parasite burdens indicating a protective role for arginase-1 in MKP-2−/− mice. In vitro studies using tachyzoite-infected bone marrow derived macrophages and selective inhibition of arginase-1 and iNOS activities confirmed that both iNOS and arginase-1 contributed to inhibiting parasite replication. However, the effects of arginase-1 were transient and ultimately the role of iNOS was paramount in facilitating long-term inhibition of parasite multiplication within macrophages.  相似文献   

10.
Serum amyloid A (SAA) increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3 −/−). Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC). Both male and female Saa3 −/− mice gained less weight on the HFHSC diet compared to Saa3+/+ littermate controls, with no differences in body composition or resting metabolism. Female Saa3 −/− mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3 −/− mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3 −/− mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2) secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3 −/− mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1/2 expression, and that SAA3 could play a larger role in the acute phase response than previously thought.  相似文献   

11.
Steatosis, oxidative stress, and apoptosis underlie the development of nonalcoholic steatohepatitis (NASH). Protein kinase C delta (PKCδ) has been implicated in fatty liver disease and is activated in the methionine and choline-deficient (MCD) diet model of NASH, yet its pathophysiological importance towards steatohepatitis progression is uncertain. We therefore addressed the role of PKCδ in the development of steatosis, inflammation, oxidative stress, apoptosis, and fibrosis in an animal model of NASH. We fed PKCδ−/− mice and wildtype littermates a control or MCD diet. PKCδ−/− primary hepatocytes were used to evaluate the direct effects of fatty acids on hepatocyte lipid metabolism gene expression. A reduction in hepatic steatosis and triglyceride levels were observed between wildtype and PKCδ−/− mice fed the MCD diet. The hepatic expression of key regulators of β-oxidation and plasma triglyceride metabolism was significantly reduced in PKCδ−/− mice and changes in serum triglyceride were blocked in PKCδ−/− mice. MCD diet-induced hepatic oxidative stress and hepatocyte apoptosis were reduced in PKCδ−/− mice. MCD diet-induced NADPH oxidase activity and p47phox membrane translocation were blunted and blocked, respectively, in PKCδ−/− mice. Expression of pro-apoptotic genes and caspase 3 and 9 cleavage in the liver of MCD diet fed PKCδ−/− mice were blunted and blocked, respectively. Surprisingly, no differences in MCD diet-induced fibrosis or pro-fibrotic gene expression were observed in 8 week MCD diet fed PKCδ−/− mice. Our results suggest that PKCδ plays a role in key pathological features of fatty liver disease but not ultimately in fibrosis in the MCD diet model of NASH.  相似文献   

12.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin.  相似文献   

13.
Hepatocyte cell death and liver inflammation have been well recognized as central characteristics of nonalcoholic steatohepatitis (NASH), however, the underlying molecular basis remains elusive. The kinase receptor-interacting protein 1 (RIP1) is a multitasking molecule with distinct functions in regulating apoptosis, necroptosis, and inflammation. Dissecting the role of RIP1 distinct functions in different pathophysiology has absorbed huge research enthusiasm. Wild-type and RIP1 kinase-dead (Rip1K45A/K45A) mice were fed with high-fat diet (HFD) to investigate the role of RIP1 kinase activity in the pathogenesis of NASH. Rip1K45A/K45A mice exhibited significantly alleviated NASH phenotype of hepatic steatosis, liver damage, fibrosis as well as reduced hepatic cell death and inflammation compared to WT mice. Our results also indicated that both in vivo lipotoxicity and in vitro saturated fatty acids (palmitic acid) treatment were able to induce the kinase activation of RIP1 in liver macrophages. RIP1 kinase was required for mediating inflammasome activation, apoptotic and necrotic cell death induced by palmitic acid in both bone marrow-derived macrophage and mouse primary Kupffer cells. Results from chimeric mice established through lethal irradiation and bone marrow transplantation further confirmed that the RIP1 kinase in hematopoietic-derived macrophages contributed mostly to the disease progression in NASH. Consistent with murine models, we also found that RIP1 kinase was markedly activated in human NASH, and the kinase activation mainly occurred in liver macrophages as indicated by immunofluorescence double staining. In summary, our study indicated that RIP1 kinase was phosphorylated and activated mainly in liver macrophages in both experimental and clinical NASH. We provided direct genetic evidence that the kinase activity of RIP1 especially in hematopoietic-derived macrophages contributes to the pathogenesis of NASH, through mediating inflammasome activation and cell death induction. Macrophage RIP1 kinase represents a specific and potential therapeutic target for NASH.Subject terms: Cell death and immune response, Chronic inflammation  相似文献   

14.
Hepatic insulin resistance is associated with increased collagen. Integrin α1β1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1−/−) and wild-type (itga1+/+) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1+/+ mice. In contrast, it was not suppressed in HF-fed itga1−/− mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1−/− mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1−/− mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1−/− mice. The decrease in hepatic lipid accumulation in HF-fed itga1−/− mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet.  相似文献   

15.

Background

Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses.

Methods

We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C+/+ and GC-C−/− mice were bred with interleukin (IL)-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10−/−, GC-C+/+IL-10−/− and GC-C−/−IL-10−/− mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line.

Results

Relative to GC-C+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C−/− mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C−/−IL-10−/− animals was significantly more severe relative to GC-C+/+IL-10−/− mice. Unlike GC-C+/+IL-10−/− controls, colon pathology in GC-C−/−IL-10−/− animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C−/−IL-10−/− mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells.

Conclusions

The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by systemic cytokine burst or loss of mucosal immune cell immunosuppression. These data as well as the apparent intestinal inflammation in human GC-C mutant kindred underscore the importance of GC-C in regulating the response to injury and inflammation within the gut.  相似文献   

16.
Kdm2a catalyzes H3K36me2 demethylation to play an intriguing epigenetic regulatory role in cell proliferation, differentiation, and apoptosis. Herein we found that myeloid-specific knockout of Kdm2a (LysM-Cre-Kdm2af/f, Kdm2a−/−) promoted macrophage M2 program by reprograming metabolic homeostasis through enhancing fatty acid uptake and lipolysis. Kdm2a−/− increased H3K36me2 levels at the Pparg locus along with augmented chromatin accessibility and Stat6 recruitment, which rendered macrophages with preferential M2 polarization. Therefore, the Kdm2a−/− mice were highly protected from high-fat diet (HFD)-induced obesity, insulin resistance, and hepatic steatosis, and featured by the reduced accumulation of adipose tissue macrophages and repressed chronic inflammation following HFD challenge. Particularly, Kdm2a−/− macrophages provided a microenvironment in favor of thermogenesis. Upon HFD or cold challenge, the Kdm2a−/− mice manifested higher capacity for inducing adipose browning and beiging to promote energy expenditure. Collectively, our findings demonstrate the importance of Kdm2a-mediated H3K36 demethylation in orchestrating macrophage polarization, providing novel insight that targeting Kdm2a in macrophages could be a viable therapeutic approach against obesity and insulin resistance.Subject terms: Chronic inflammation, Histone post-translational modifications, Epigenetics, Endocrine system and metabolic diseases  相似文献   

17.
We have recently demonstrated that MAP kinase phosphatase 2 (MKP-2) deficient C57BL/6 mice, unlike their wild-type counterparts, are unable to control infection with the protozoan parasite Leishmania mexicana. Increased susceptibility was associated with elevated Arginase-1 levels and reduced iNOS activity in macrophages as well as a diminished TH1 response. By contrast, in the present study footpad infection of MKP-2−/− mice with L. major resulted in a healing response as measured by lesion size and parasite numbers similar to infected MKP-2+/+ mice. Analysis of immune responses following infection demonstrated a reduced TH1 response in MKP-2−/− mice with lower parasite specific serum IgG2b levels, a lower frequency of IFN-γ and TNF-α producing CD4+ and CD8+ T cells and lower antigen stimulated spleen cell IFN-γ production than their wild-type counterparts. However, infected MKP-2−/− mice also had similarly reduced levels of antigen induced spleen and lymph node cell IL-4 production compared with MKP-2+/+ mice as well as reduced levels of parasite-specific IgG1 in the serum, indicating a general T cell hypo-responsiveness. Consequently the overall TH1/TH2 balance was unaltered in MKP-2−/− compared with wild-type mice. Although non-stimulated MKP-2−/− macrophages were more permissive to L. major growth than macrophages from MKP-2+/+ mice, reflecting their reduced iNOS and increased Arginase-1 expression, LPS/IFN-γ activation was equally effective at controlling parasite growth in MKP-2−/− and MKP-2+/+ macrophages. Consequently, in the absence of any switch in the TH1/TH2 balance in MKP-2−/− mice, no significant change in disease phenotype was observed.  相似文献   

18.
19.
Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2. level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2. level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2. production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or corresponding enzyme inhibition protects the podocytes and glomeruli from hHcys-induced oxidative stress and injury.  相似文献   

20.
Although Nlrp3 inflammasome activation in macrophages has been shown to be critical for the development of atherosclerosis upon atherogenic stimuli, it remains unknown whether activated Nlrp3 inflammasomes by other non-atherogenic stimuli induce alterations in macrophages that may contribute in the concert with other factors to atherogenesis. Thus, the present study tested the hypothesis that activation of Nlrp3 inflammasomes by ATP, which is a classical non-lipid danger stimulus, enhances the migration of macrophage and increases lipids deposition in macrophages accelerating foam cell formation. We first demonstrated that extracellular ATP (2.5 mM) markedly increased the formation and activation of Nlrp3 inflammasomes in bone marrow macrophages (BMMs) from wild type (Asc+/+) mice resulting in activation of caspase-1 and IL-1β production. In these Asc+/+ macrophages, such stimulation of inflammasomes by non-lipid ATP was similar to those induced by atherogenic stimuli such as cholesterol crystals or 7-ketocholesterol. Both non-lipid and lipid forms of stimuli induced formation and activation of Nlrp3 inflammasomes, which were prevented by Asc gene deletion. Interestingly, Asc+/+ BMMs had dramatic lipids accumulation after stimulation with ATP. Further, we demonstrated that large amount of cholesterol was accumulated in lysosomes of Asc+/+ BMMs when inflammasomes were activated by ATP. Such intracellular and lysosomal lipids deposition was not observed in Asc−/− BMMs and also prevented by caspase-1 inhibitor WEHD. In addition, in vitro and in vivo experiments revealed that migration of Asc+/+ BMMs increased due to stimulation of Nlrp3 inflammasomes, which was markedly attenuated in Asc−/− BMMs. Together, these results suggest that activation of Nlrp3 inflammasomes remarkably increases the susceptibility of macrophages to lipid deposition and their migration ability. Such novel action of inflammasomes may facilitate entry or retention of macrophages into the arterial wall, where they form foam cells and ultimately induce atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号