首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.  相似文献   

2.
Sporophytes from natural populations of ferns occupying pioneer lava and mature rainforest habitats on the island of Hawaii, Hawaiian Islands, were investigated to determine their mating system and frequency of recessive lethal genes (genetic load). Species dominant in pioneer lava habitats were found to have intragametophytic mating systems and to be devoid of lethal genotypes. Species from intermediate and mature rain-forest habitats exhibited complex intergametophytic mating systems and higher levels of genetic load. It is suggested that natural selection has favoured intragametophytic mating and homozygosity in species of less diverse and less competitive pioneer habitats and intergametophytic mating and heterozygosity in species of more mature habitats.  相似文献   

3.
  • The Australian Monsoon Tropics (AMT) contain some of the most biodiverse forests on the continent. Little is known about the dynamics of rainforest plant microbiomes in general, and there have been no community-level studies on Australian rainforest endophytes, their seasonality, tissue and host specificity.
  • We tested whether community composition of tropical tree endophytes (fungi and bacteria) differs: (i) at different points during a monsoon cycle, (ii) between leaf and stem tissues, (iii) between forest microclimates (gully/ridge), and between (iv) host plant species, and (v) host plant clade, using amplicon sequencing of the bacterial 16S and fungal ITS2 gene regions.
  • Results indicated that the composition of rainforest plant microbiomes differs between wet and dry seasons, which may be explained by physiological shifts in host plants due to annual climate fluctuations from mesic to xeric. Endophyte microbiomes differed between leaves and stems. Distinct fungal communities were associated with host species and clades, with some trees enriched in a number of fungal taxa compared to host plants in other clades. Diversity of bacterial endophytes in plant stems increased in the dry season.
  • We conclude that the microbiomes of tropical plants are responsive to monsoonal climate variation, are highly compartmentalised between plant tissues, and may be partly shaped by the relatedness of their host plants.
  相似文献   

4.
The chamois is a habitat specialist ungulate occupying “continental archipelagos” of fragmented rocky habitats which are frequently restricted to high altitudes. It is not clear whether forest habitats separating such population fragments act as barriers to gene flow. We studied the genetic makeup of the chamois in a topographically diverse landscape at the contact zone of two mountain ranges in Slovenia. Based on sequences of mitochondrial DNA, all Slovenian populations belong to a Northern chamois (Rupicapra r. rupicapra) subspecies. The range of chamois in Slovenia encompasses three different regions, each with unique topography, habitat connectivity and abundance of chamois: the Alps, the Dinaric Mts., and the Pohorje Mts. The habitat of the chamois is extensive and more or less continuous in the Alps, but suboptimal and fragmented in the remaining regions. In agreement with neutral genetic theory, large Northern chamois populations tended to have higher allelic richness and observed heterozygosity. Spatial clustering bears the differentiation into four geographically associated clusters within Slovenia and also revealed a strong substructure within all mountain ranges with suboptimal chamois habitat. Surprisingly, some small Dinaric populations have stayed genetically isolated in restricted habitat patches, even if they are geographically very close to each other. The four clusters, each having a unique demographic history, should be regarded as independent units for management purposes.  相似文献   

5.
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.  相似文献   

6.
Glycoside hydrolases (GHs), the enzymes that breakdown complex carbohydrates, are a highly diversified class of key enzymes associated with the gut microbiota and its metabolic functions. To learn more about the diversity of GHs and their potential role in a variety of gut microbiomes, we used a combination of 16S, metagenomic and targeted amplicon sequencing data to study one of these enzyme families in detail. Specifically, we employed a functional gene-targeted metagenomic approach to the 1-4-α-glucan-branching enzyme (gBE) gene in the gut microbiomes of four host species (human, chicken, cow and pig). The characteristics of operational taxonomic units (OTUs) and operational glucan-branching units (OGBUs) were distinctive in each of hosts. Human and pig were most similar in OTUs profiles while maintaining distinct OGBU profiles. Interestingly, the phylogenetic profiles identified from 16S and gBE gene sequences differed, suggesting the presence of different gBE genes in the same OTU across different vertebrate hosts. Our data suggest that gene-targeted metagenomic analysis is useful for an in-depth understanding of the diversity of a particular gene of interest. Specific carbohydrate metabolic genes appear to be carried by distinct OTUs in different individual hosts and among different vertebrate species'' microbiomes, the characteristics of which differ according to host genetic background and/or diet.  相似文献   

7.
The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral‐associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.  相似文献   

8.
Bacterial communities colonizing the reproductive tracts of primates (including humans) impact the health, survival and fitness of the host, and thereby the evolution of the host species. Despite their importance, we currently have a poor understanding of primate microbiomes. The composition and structure of microbial communities vary considerably depending on the host and environmental factors. We conducted comparative analyses of the primate vaginal microbiome using pyrosequencing of the 16S rRNA genes of a phylogenetically broad range of primates to test for factors affecting the diversity of primate vaginal ecosystems. The nine primate species included: humans (Homo sapiens), yellow baboons (Papio cynocephalus), olive baboons (Papio anubis), lemurs (Propithecus diadema), howler monkeys (Alouatta pigra), red colobus (Piliocolobus rufomitratus), vervets (Chlorocebus aethiops), mangabeys (Cercocebus atys) and chimpanzees (Pan troglodytes). Our results indicated that all primates exhibited host-specific vaginal microbiota and that humans were distinct from other primates in both microbiome composition and diversity. In contrast to the gut microbiome, the vaginal microbiome showed limited congruence with host phylogeny, and neither captivity nor diet elicited substantial effects on the vaginal microbiomes of primates. Permutational multivariate analysis of variance and Wilcoxon tests revealed correlations among vaginal microbiota and host species-specific socioecological factors, particularly related to sexuality, including: female promiscuity, baculum length, gestation time, mating group size and neonatal birth weight. The proportion of unclassified taxa observed in nonhuman primate samples increased with phylogenetic distance from humans, indicative of the existence of previously unrecognized microbial taxa. These findings contribute to our understanding of host–microbe variation and coevolution, microbial biogeography, and disease risk, and have important implications for the use of animal models in studies of human sexual and reproductive diseases.  相似文献   

9.

Background and Aims

In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.

Methods

Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.

Key Results

In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence.

Conclusions

The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.  相似文献   

10.
The use of movement data as an assay of habitat quality   总被引:4,自引:0,他引:4  
Based on our observations and those of others from the literature, we construct a graphical model of habitat use in territorial species at high densities relative to optimal habitat availability. This model ignores differences in abundance among habitats, and, together with other models of habitat use, predicts that there should be greater stability (lower turnover rates) among individuals occupying optimal habitat than among those in suboptimal habitat(s). Future studies assessing quality among habitats might take advantage of this by comparing individual turnover rates among habitat types using standard mark-recapture methodology. As an illustrative example, we present a case in wintering wood thrushes (Catharus mustelinus; Muscicapidae: Turdinae) in which relative abundance and habitat quality were inversely related. Many individuals of this nearctic-neotropic migrant species hold nonbreeding territories in the seemingly crowded rainforest of southern Veracruz, Mexico.  相似文献   

11.
There has been an explosion of research on host-associated microbial communities (i.e.,microbiomes). Much of this research has focused on surveys of microbial diversities across a variety of host species, including humans, with a view to understanding how these microbiomes are distributed across space and time, and how they correlate with host health, disease, phenotype, physiology and ecology. Fewer studies have focused on how these microbiomes may have evolved. In this paper, we develop an agent-based framework to study the dynamics of microbiome evolution. Our framework incorporates neutral models of how hosts acquire their microbiomes, and how the environmental microbial community that is available to the hosts is assembled. Most importantly, our framework also incorporates a Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution is studied on an evolutionary timescale. Our results indicate that the extent of parental contribution to microbial availability from one generation to the next significantly impacts the diversity of microbiomes: the greater the parental contribution, the less diverse the microbiomes. In contrast, even when there is only a very small contribution from a constant environmental pool, microbial communities can remain highly diverse. Finally, we show that our models may be used to construct hypotheses about the types of processes that operate to assemble microbiomes over evolutionary time.  相似文献   

12.
Background and Aims Thiophores, which are typically desert gypsophytes, accumulate high (2–6 % S dry weight) sulphur concentrations and may possess unique tolerance to environmental stress factors, e.g. sulphate/metal toxicity, drought and salinity. Little is known of the prevalence of the behaviour or the associated physiological aspects. The aim of this study was to (a) determine the prevalence of thiophore behaviour in a group of Australian xerophytes; (b) identify elemental uptake/storage characteristics of these thiophores; and (c) determine whether the behaviour is constitutive or environmental.Methods The elemental composition of soils and the foliage of 11 species (seven genera) at a site in the Tanami Desert (NT, Australia) was compared and 13 additional Acacia species from other locations were examined for elevated calcium and sulphur concentrations and calcium–sulphur mineralization, thought to be particular to thiophores.Key Results Acacia bivenosa DC. and 11 closely related species were identified as thiophores that can accumulate high levels of sulphur (up to 3·2 %) and calcium (up to 6.8 %), but no thiophores were identified in other genera occupying the same habitat. This behaviour was observed in several populations from diverse habitats, from samples collected over three decades. It was also observed that these thiophores featured gypsum (CaSO4·2H2O) crystal druses that completely filled cells and vascular systems in their dried phyllode tissues.Conclusions The thiophores studied exhibit a tight coupling between sulphur and calcium uptake and storage, and apparently store these elements as inorganic salts within the cells of their foliage. Thiophore behaviour is a constitutive trait shared by closely related Acacia but is not highly prevalent within, nor exclusive to, xerophytes. Several of the newly identified thiophores occupy coastal or riparian habitats, suggesting that the evolutionary and ecophysiological explanations for this trait do not lie solely in adaptation to arid conditions or gypsiferous soils.  相似文献   

13.
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.  相似文献   

14.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

15.
Fecal microbial biomarkers represent a less invasive alternative for acquiring information on wildlife populations than many traditional sampling methodologies. Our goal was to evaluate linkages between fecal microbiome communities in Rocky Mountain elk (Cervus canadensis) and four host factors including sex, age, population, and physical condition (body‐fat). We paired a feature‐selection algorithm with an LDA‐classifier trained on elk differential bacterial abundance (16S‐rRNA amplicon survey) to predict host health factors from 104 elk microbiomes across four elk populations. We validated the accuracy of the various classifier predictions with leave‐one‐out cross‐validation using known measurements. We demonstrate that the elk fecal microbiome can predict the four host factors tested. Our results show that elk microbiomes respond to both the strong extrinsic factor of biogeography and simultaneously occurring, but more subtle, intrinsic forces of individual body‐fat, sex, and age‐class. Thus, we have developed and described herein a generalizable approach to disentangle microbiome responses attributed to multiple host factors of varying strength from the same bacterial sequence data set. Wildlife conservation and management presents many challenges, but we demonstrate that non‐invasive microbiome surveys from scat samples can provide alternative options for wildlife population monitoring. We believe that, with further validation, this method could be broadly applicable in other species and potentially predict other measurements. Our study can help guide the future development of microbiome‐based monitoring of wildlife populations and supports hypothetical expectations found in host‐microbiome theory.  相似文献   

16.
17.
Living ‘things’ coexist with microorganisms, known as the microbiota/microbiome that provides essential physiological functions to its host. Despite this reliance, the microbiome is malleable and can be altered by several factors including birth-mode, age, antibiotics, nutrition, and disease. In this minireview, we consider how other microbiomes and microbial communities impact the host microbiome and the host through the concept of microbiome collisions (initial exposures) and interactions. Interactions include changes in host microbiome composition and functionality and/or host responses. Understanding the impact of other microbiomes and microbial communities on the microbiome and host are important considering the decline in human microbiota diversity in the developed world – paralleled by the surge of non-communicable, inflammatory-based diseases. Thus, surrounding ourselves with rich and diverse beneficial microbiomes and microbial communities to collide and interact with should help to diminish the loss in microbial diversity and protect from certain diseases. In the same vein, our microbiomes not only influence our health but potentially the health of those close to us. We also consider strategies for enhanced host microbiome collisions and interactions through the surrounding environment that ensure increased microbiome diversity and functionality contributing to enhanced symbiotic return to the host in terms of health benefit.  相似文献   

18.
The gut microbiome can help the host adapt to a variety of environments and is affected by many factors. Marine carnivores have unique habitats in extreme environments. The question of whether marine habitats surpass phylogeny to drive the convergent evolution of the gut microbiome in marine carnivores remains unanswered. In the present study, we compared the gut microbiomes of 16 species from different habitats. Principal component analysis (PCA) and principal coordinate analysis (PCoA) separated three groups according to their gut microbiomes: marine carnivores, terrestrial carnivores, and terrestrial herbivores. The alpha diversity and niche breadth of the gut microbiome of marine carnivores were lower than those of the gut microbiome of terrestrial carnivores and terrestrial herbivores. The gut microbiome of marine carnivores harbored many marine microbiotas, including those belonging to the phyla Planctomycetes, Cyanobacteria, and Proteobacteria, and the genus Peptoclostridium. Collectively, these results revealed that marine habitats drive the convergent evolution of the gut microbiome of marine carnivores. This study provides a new perspective on the adaptive evolution of marine carnivores.  相似文献   

19.
Saliva microbiomes distinguish caries-active from healthy human populations   总被引:1,自引:0,他引:1  
The etiology of dental caries remains elusive because of our limited understanding of the complex oral microbiomes. The current methodologies have been limited by insufficient depth and breadth of microbial sampling, paucity of data for diseased hosts particularly at the population level, inconsistency of sampled sites and the inability to distinguish the underlying microbial factors. By cross-validating 16S rRNA gene amplicon-based and whole-genome-based deep-sequencing technologies, we report the most in-depth, comprehensive and collaborated view to date of the adult saliva microbiomes in pilot populations of 19 caries-active and 26 healthy human hosts. We found that: first, saliva microbiomes in human population were featured by a vast phylogenetic diversity yet a minimal organismal core; second, caries microbiomes were significantly more variable in community structure whereas the healthy ones were relatively conserved; third, abundance changes of certain taxa such as overabundance of Prevotella Genus distinguished caries microbiota from healthy ones, and furthermore, caries-active and normal individuals carried different arrays of Prevotella species; and finally, no ‘caries-specific'' operational taxonomic units (OTUs) were detected, yet 147 OTUs were ‘caries associated'', that is, differentially distributed yet present in both healthy and caries-active populations. These findings underscored the necessity of species- and strain-level resolution for caries prognosis, and were consistent with the ecological hypothesis where the shifts in community structure, instead of the presence or absence of particular groups of microbes, underlie the cariogenesis.  相似文献   

20.
The ‘dilution effect’ (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity–ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号