共查询到20条相似文献,搜索用时 0 毫秒
1.
Victor A. Cazares Arasakumar Subramani Johnny J. Saldate Widmann Hoerauf Edward L. Stuenkel 《Traffic (Copenhagen, Denmark)》2014,15(9):997-1015
Rab GTPases associated with insulin‐containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β‐cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase‐activating protein overexpression in β‐cells from wild‐type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP‐bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release‐ready SGs in β‐cells, they also direct unique kinetic and functional properties of the exocytotic pathway. 相似文献
2.
The Rab GTPase family 总被引:3,自引:0,他引:3
The Rab family is part of the Ras superfamily of small GTPases. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane traffic pathways. In the GTP-bound form, the Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. 相似文献
3.
4.
The Rab, ARF, and Arl members of the Ras superfamily of small GTPases work together to control specific intracellular trafficking pathways. Here we focus on their roles in protein transport to and within the Golgi apparatus. 相似文献
5.
The FA translocase cluster of differentiation 36 (CD36) facilitates FA uptake by the myocardium, and its surface recruitment in cardiomyocytes is induced by insulin, AMP-dependent protein kinase (AMPK), or contraction. Dysfunction of CD36 trafficking contributes to disordered cardiac FA utilization and promotes progression to disease. The Akt substrate 160 (AS160) Rab GTPase-activating protein (GAP) is a key regulator of vesicular trafficking, and its activity is modulated via phosphorylation. Our study documents that AS160 mediates insulin or AMPK-stimulated surface translocation of CD36 in cardiomyocytes. Knock-down of AS160 redistributes CD36 to the surface and abrogates its translocation by insulin or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). Conversely, overexpression of a phosphorylation-deficient AS160 mutant (AS160 4P) suppresses the stimulated membrane recruitment of CD36. The AS160 substrate Rab8a GTPase is shown via overexpression and knock-down studies to be specifically involved in insulin/AICAR-induced CD36 membrane recruitment. Our findings directly demonstrate AS160 regulation of CD36 trafficking. In myocytes, the AS160 pathway also mediates the effect of insulin, AMPK, or contraction on surface recruitment of the glucose transporter GLUT4. Thus, AS160 constitutes a point of convergence for coordinating physiological regulation of CD36 and GLUT4 membrane recruitment. 相似文献
6.
7.
8.
Autophagy (macroautophagy) is a highly conserved intracellular and lysosome-dependent degradation process in which autophagic substrates are enclosed and degraded by a double-membrane vesicular structure in a continuous and dynamic vesicle transport process. The Rab protein is a small GTPase that belongs to the Ras-like GTPase superfamily and regulates the vesicle traffic process. Numerous Rab proteins have been shown to be involved in various stages of autophagy. Rab1, Rab5, Rab7, Rab9A, Rab11, Rab23, Rab32, and Rab33B participate in autophagosome formation, whereas Rab9 is required in non-canonical autophagy. Rab7, Rab8B, and Rab24 have a key role in autophagosome maturation. Rab8A and Rab25 are also involved in autophagy, but their role is unknown. Here, we summarize new findings regarding the involvement of Rabs in autophagy and provide insights regarding future research on the mechanisms of autophagy regulation. 相似文献
9.
The Arabidopsis Rab GTPase family: another enigma variation 总被引:10,自引:0,他引:10
The Arabidopsis genome sequence reveals that gene families such as the Rab GTPase family, which encodes key determinants of vesicle-targeting specificity, are considerably more diverse in plants and mammals than in yeast. In mammals, this diversity appears to reflect the complexity of membrane trafficking. Phylogenetic analyses indicate that, despite its large size, the Arabidopsis Rab family lacks most of the Rab subclasses found in mammals. The Arabidopsis Rab family has, however, undergone a distinct 'adaptive radiation' that has given rise to proteins that may perform plant-specific functions. 相似文献
10.
Giantin interacts with both the small GTPase Rab6 and Rab1 总被引:1,自引:0,他引:1
The interaction of small GTPases of the Rab family and coiled coil proteins of the golgin family has been reported for example for the Rab1 GTPase and p115, GM130 and Giantin. We now show that Rab6A, a GTPase that controls retrograde trafficking within the Golgi back to the endoplasmic reticulum is also able to bind to Giantin in vivo and in vitro pointing to an interesting complex formation between Giantin and two different Rab GTPases. In Saccharomyces cerevisiae a genetic interaction between Ypt1 and Ypt6 has already been demonstrated, but in this paper we were able to describe that the mammalian Rab GTPases are able to interact on the same golgin protein, Giantin. 相似文献
11.
Collins RN 《Molecular membrane biology》2003,20(2):105-115
Our understanding of the mechanisms governing of Rab and Arf protein function has exploded in recent years with a convergence of information from model genetic organisms, biochemical studies, cell biological observations and protein structural information. However, the list of known Rab and Arf interacting factors still remains small relative to the number of these small GTPases that have been identified through complete genomic sequencing. It can be anticipated that the factors listed and discussed in this review probably represent a small fraction of the Rab and Arf accessory molecules that remain to be discovered. The identification of regulators and accessory molecules for the Rab and Arf families has allowed investigators to elaborate themes and develop a framework for a mechanistic understanding of these proteins. The themes are highlighted in this review, which aims to concentrate on Rab and Arf function in exocytosis. 相似文献
12.
13.
14.
Rab GTPases are molecular switches with essential roles in mediating vesicular trafficking and establishing organelle identity. The conversion from the inactive, cytosolic to the membrane-bound, active species and back is tightly controlled by regulatory proteins. Recently, the roles of membrane properties and lipid composition of different target organelles in determining the activity state of Rabs have come to light. The investigation of several Rab guanine nucleotide exchange factors (GEFs) has revealed principles of how the recruitment via lipid interactions and the spatial confinement on the membrane surface contribute to spatiotemporal specificity in the Rab GTPase network. This paints an intricate picture of the control mechanisms in Rab activation and highlights the importance of the membrane lipid code in the organization of the endomembrane system. 相似文献
15.
Phagocytosis, an evolutionarily conserved process in animals, plays a central role in host defense against pathogens. As reported, Rab6 GTPase was involved in the regulation of hemocytic phagocytosis in invertebrates. However, the role of Rab6 GTPase in mammalian phagocytosis remains to be addressed. In this study, the results showed that Rab6 GTPase took great effects on phagocytosis of mouse leukemic monocyte macrophages (RAW 264.7 cells). It was revealed that Rab6 GTPase was required during the phagosome maturation by its interaction with bicaudal-D1 (BICD1) protein. Further data presented that the Rab6 GTPase-regulated phagocytosis could influence the proliferation of Staphylococcus aureus in macrophages. Therefore, our study demonstrated a novel insight into the mechanism of regulation of mammalian phagocytosis by Rab6 GTPase and a novel strategy for the control of Staphylococcus aureus. 相似文献
16.
The Rab family proteins belong to the Ras-like GTPase superfamily and play important roles in intracellular membrane trafficking. To date no studies on fish Rab have been documented, though rab-like sequences have been found in a number of teleosts. In this study, we identified and analyzed a Rab homologue, SoRab1, from red drum, Sciaenops ocellatus. The cDNA of SoRab1 contains a 5'- untranslated region (UTR) of 358 bp, an open reading frame (ORF) of 612 bp, and a 3'-UTR of 265 bp. The ORF encodes a putative protein of 203 residues, which shares 92-99% overall sequence identities with the Rab1 from fish, human, and mouse. SoRab1 possesses a typical Rab1 GTPase domain with the conserved G box motifs and the switch I and switch II regions. Recombinant SoRab1 purified from Escherichia coli exhibits apparent GTPase activity. Quantitative real time RT-PCR analysis showed that SoRab1 expression was detected in a number of tissues, with the lowest expression found in blood and highest expression found in muscle. Bacterial and lipopolysaccharide challenges significantly upregulated SoRab1 expression in liver, kidney, and spleen in time-dependent manners. Transient overexpression of SoRab1 in primary hepatocytes reduced intracellular bacterial infection, whereas interference with SoRab1 expression by RNAi enhanced intracellular bacterial invasion. These results provide the first indication that a fish Rab1 GTPase, SoRab1, regulates intracellular bacterial infection and thus is likely to play a role in bacteria-induced host immune defense. 相似文献
17.
Ding J Soule G Overmeyer JH Maltese WA 《Biochemical and biophysical research communications》2003,312(3):670-675
Several members of the large family of Rab GTPases have been shown to function in vesicular trafficking in mammalian cells. However, the exact role of Rab24 remains poorly defined. Rab24 differs from other Rab proteins in that it has a low intrinsic GTPase activity and is not efficiently prenylated. Here we report an additional unique property of Rab24; i.e., the protein can undergo tyrosine phosphorylation when overexpressed in cultured cells. Immunoblot analyses with specific anti-phosphotyrosine monoclonal antibodies revealed the presence of phosphotyrosine (pTyr) on myc-Rab24 in whole cell lysates and immunoprecipitated samples. No pTyr was detected on other overexpressed myc-tagged GTPases (H-Ras, Rab1b, Rab6, Rab11 or Rab13). Comparisons of myc-Rab24 in the soluble and particulate fractions from HEK293 and HEp-2 cells indicated that the cytosolic pool of Rab24 was more heavily phosphorylated than the membrane pool. Treatment of transfected cells with the broad-spectrum tyrosine kinase inhibitor, genistein, as well as the specific Src-family kinase inhibitor, PP2, eliminated the pTyr signal from Rab24. In contrast the receptor tyrosine kinase inhibitor, tyrphostin A25, had no effect. Tyrosine phosphorylation of Rab24 was reduced by alanine substitution of two unique tyrosines, one found in a strong consensus phosphorylation motif (Y [Formula: see text] ) in the hypervariable domain (Y172) and the other falling within the GXXXGK(S/T) motif known as the P-loop (Y17). The latter region is known to influence GTP hydrolysis in Rab proteins, so the phosphorylation of Y17 could contribute to the low intrinsic GTPase activity of Rab24. This is the first report of tyrosine phosphorylation in any member of the Ras superfamily and it raises the possibility that this type of modification could influence Rab24 targeting and interactions with effector protein complexes. 相似文献
18.
Erdman RA Shellenberger KE Overmeyer JH Maltese WA 《The Journal of biological chemistry》2000,275(6):3848-3856
The function of Rab24 is currently unknown, but other members of the Rab GTPase family are known to participate in various protein trafficking pathways. Rab proteins are thought to cycle on and off vesicle membranes in conjunction with changes in their guanine nucleotide state. The present studies indicate that Rab24 possesses several unusual characteristics that distinguish it from other Rab proteins. 1) Based on [(32)P]orthophosphate labeling of protein-bound nucleotide, Rab24 exists predominantly in the GTP state when expressed in cultured cells. The low GTPase activity is related to the presence of serine instead of glutamine at the position cognate to Ras Gln-61. 2) Posttranslational geranylgeranylation of Rab24, determined by metabolic labeling or detergent partitioning assays, is inefficient when compared with other Rabs ending with the common CXC and CC carboxyl-terminal motifs. This is partly due to the presence of two histidines distal to the target cysteines, but also involves other unidentified features. 3) Most of the Rab24 in the cytoplasmic compartment of cultured cells is not associated with Rab GDP dissociation inhibitors. These findings indicate that, if Rab24 functions in vesicular transport processes, it may operate through a novel mechanism that does not depend on GTP hydrolysis or GDP dissociation inhibitor-mediated recycling. 相似文献
19.
Seiichiro Oda Takashi Nozawa Atsuko Nozawa-Minowa Misako Tanaka Chihiro Aikawa Hiroyuki Harada Ichiro Nakagawa 《PloS one》2016,11(1)
Autophagy acts as a host-defense system against pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we identified Rab30 as a novel regulator of GAS-containing autophagosome-like vacuoles (GcAVs). We found that Rab30, a Golgi-resident Rab, was recruited to GcAVs in response to autophagy induction by GAS infection in epithelial cells. Rab30 recruitment was dependent upon its GTPase activity. In addition, the knockdown of Rab30 expression significantly reduced GcAV formation efficiency and impaired intracellular GAS degradation. Rab30 normally functions to maintain the structural integrity of the Golgi complex, but GcAV formation occurred even when the Golgi apparatus was disrupted. Although Rab30 also colocalized with a starvation-induced autophagosome, Rab30 was not required for autophagosome formation during starvation. These results suggest that Rab30 mediates autophagy against GAS independently of its normal cellular role in the structural maintenance of the Golgi apparatus, and autophagosome biogenesis during bacterial infection involves specific Rab GTPases. 相似文献
20.
The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans 下载免费PDF全文
We identify here a novel class of loss-of-function alleles of uncoordinated locomotion(unc)-108, which encodes the Caenorhabditis elegans homologue of the mammalian small guanosine triphosphatase Rab2. Like the previously isolated dominant-negative mutants, unc-108 loss-of-function mutant animals are defective in locomotion. In addition, they display unique defects in the removal of apoptotic cells, revealing a previously uncharacterized function for Rab2. unc-108 acts in neurons and engulfing cells to control locomotion and cell corpse removal, respectively, indicating that unc-108 has distinct functions in different cell types. Using time-lapse microscopy, we find that unc-108 promotes the degradation of engulfed cell corpses. It is required for the efficient recruitment and fusion of lysosomes to phagosomes and the acidification of the phagosomal lumen. In engulfing cells, UNC-108 is enriched on the surface of phagosomes. We propose that UNC-108 acts on phagosomal surfaces to promote phagosome maturation and suggest that mammalian Rab2 may have a similar function in the degradation of apoptotic cells. 相似文献