首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.  相似文献   

5.
6.
7.
8.
Helicobacter pylori, a Gram-negative, microaerophilic bacterium found in the stomach, is assumed to be associated with carcinogenesis, invasion and metastasis in digestive diseases. Cytotoxin-associated gene A (CagA) is an oncogenic protein of H. pylori that is encoded by a Cag pathogenicity island related to the development of gastric cancer. The epithelial–mesenchymal transition (EMT) is the main biological event in invasion or metastasis of epithelial cells. H. pylori may promote EMT in human gastric cancer cell lines, but the specific mechanisms are still obscure. We explored the underlying molecular mechanism of EMT induced by H. pylori CagA in gastric cancer. In our article, we detected gastric cancer specimens and adjacent non-cancerous specimens by immunohistochemistry and found increased expression of the EMT-related regulatory protein TWIST1 and the mesenchymal marker vimentin in cancer tissues, while programmed cell death factor 4 (PDCD4) and the epithelial marker E-cadherin expression decreased in cancer specimens. These changes were associated with degree of tissue malignancy. In addition, PDCD4 and TWIST1 levels were related. In gastric cancer cells cocultured with CagA expression plasmid, CagA activated TWIST1 and vimentin expression, and inhibited E-cadherin expression by downregulating PDCD4. CagA also promoted mobility of gastric cancer cells by regulating PDCD4. Thus, H. pylori CagA induced EMT in gastric cancer cells, which reveals a new signaling pathway of EMT in gastric cancer cell lines.  相似文献   

9.
10.
The epithelial–mesenchymal transition (EMT) is an important cellular process during which polarized epithelial cells become motile mesenchymal cells, which promote cancer metastasis. Ginger, the rhizome of Zingiber officinale, is extensively used in cooking worldwide and also as a traditional medicinal herb with antioxidant, anti-inflammatory and anticancer properties. Several pungent compounds have been identified in ginger, including zingerone, which has anticancer potential. However, the role of zingerone in EMT is unclear. We investigated the synergistic effect of zingerone and its derivative on EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT to promote hepatocellular carcinoma metastasis, including migration and invasion. To understand the repressive role of the combination of zingerone and its derivative (ZD 2) in hepatocellular carcinoma metastasis, we investigated the potential use of each compound of ginger, such as zingerone, ZD 2 and 6-shogaol, or the mixture of zingerone and ZD 2 (ZD 2-1) as inhibitors of TGF-β1 induced EMT development in SNU182 hepatocellular carcinoma cells in vitro. We show that ZD 2-1, but not zingerone, ZD 2 and 6-shogaol significantly increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin during initiation of the TGF-β1 induced EMT. In addition, ZD 2-1 inhibited the TGF-β1 induced increase in cell migration and invasion of SNU182 hepatocellular carcinoma cells. Furthermore, ZD 2-1 significantly inhibited TGF-β1 regulated matrix metalloproteinase-2/9 and activation of Smad2/3. We also found that ZD 2-1 inhibited nuclear translocation of NF-κB, activation of p42/44 MAPK/AP1 signaling pathway in the TGF-β1 induced EMT. Our findings provide new evidence that combined treatment with ZD 2, novel zingerone derivative, and zingerone synergistically suppresses hepatocellular carcinoma metastasis in vitro by inhibiting the TGF-β1 induced EMT.  相似文献   

11.
目的:探讨上皮间质转化(epithelial-mesenchymal transition,EMT)过程在肺癌侵袭转移中的作用。方法:体外培养A549细胞,以bFGF(10ng/ml)进行干预后,倒置相差显微镜观察细胞形态学变化;间接免疫荧光观察上皮细胞标志物E-cadherin和间质细胞标志物vimentin蛋白表达的变化;采用细胞划痕试验检测bFGF对A549细胞迁移能力的影响;采用transwell小室试验检测bFGF对A549细胞侵袭能力的影响。结果:bFGF(10ng/ml)干预后,在倒置相差显微镜下观察,A549细胞形态变成了梭形,形态如同成纤维细胞。间接免疫荧光显示A549细胞E-cadherin表达随时间延长逐渐减弱,而vimentin表达逐渐增强。细胞划痕试验显示,bFGF干预后细胞迁移能力提高。Transwell小室试验显示,bFGF干预后细胞侵袭能力提高。结论:bFGF在体外诱导肺腺癌细胞系A549细胞发生上皮间质转化,上皮间质转化是肺癌侵袭转移的重要机制之一。  相似文献   

12.
13.
The epithelial–mesenchymal transition (EMT) occurs commonly during carcinoma invasion and metastasis, but not during early tumorigenesis. Microarray data demonstrated elevation of vimentin, a mesenchymal marker, in intestinal adenomas from Apc Min/+ (Min) mice. We have tested the involvement of EMT in early tumorigenesis in mammalian intestines by following EMT-associated markers. Elevated vimentin RNA expression and protein production were detected within neoplastic cells in murine intestinal adenomas. Similarly, vimentin protein was detected in both adenomas and invasive adenocarcinomas of the human colon, but not in the normal colonic epithelium or in hyperplastic polyps. Expression of E-cadherin varied inversely with vimentin. In addition, the expression of fibronectin was elevated while that of E-cadherin decreased. Canonical E-cadherin suppressors, such as Snail, were not elevated in the same tumor. Elevated vimentin expression in the adenoma was not correlated with persistent Ras signaling, but was strongly correlated with reduced proliferation indices, active Wnt signaling, and TGF-β signaling, as demonstrated by its dependence on Smad3. We designate our observations of expression of only some of the canonical features of EMT as “truncated EMT”. These unexpected observations are interpreted as reflecting the involvement of a core of the EMT system during the tissue remodeling of early tumorigenesis.  相似文献   

14.
The generation of myofibroblasts via epithelial-mesenchymal transition (EMT), a process through which epithelial cells lose their polarity and become motile mesenchymal cells, is a proposed contributory factor in fibrosis of a number of organs. Currently, it remains unclear to what extent epithelia of the upper airways and large intestine are susceptible to this process. Herein, we investigated the ability of model cell lines of alveolar (A549), bronchial (Calu-3) and colonic (Caco-2) epithelial cells to undergo EMT when challenged with transforming growth factor-β1 (TGF-β1) and other pro-inflammatory cytokines. Western blot and immunofluorescence microscopy demonstrated that A549 cells readily underwent EMT, as evidenced by a spindle-like morphology, increase in the mesenchymal marker, vimentin, and down-regulation of E-cadherin, an epithelial marker. In contrast, neither Calu-3 nor Caco-2 cells exhibited morphological changes nor alterations in marker expression associated with EMT. Moreover, whilst stimulation of A549 cells enhanced migration and reduced their proliferative capacity, no such effect was observed in epithelial cell lines of the bronchus or colon. In addition, concomitant treatment of A549 cells with telmisartan, an angiotensin II receptor antagonist with antifibrotic properties, was found to reduce cytokine-induced collagen I production and cell migration, although expression levels of vimentin and E-cadherin remained unaltered. Mechanistically, telmisartan failed to inhibit phosphorylation of Smad2/3. Together, these results, using representative in vitro models of the alveolus, bronchus and colon, tentatively suggest that epithelial cell plasticity and susceptibility to EMT may differ depending on its tissue origin. Furthermore, our investigations point to the beneficial effect of telmisartan in partial abrogation of alveolar EMT.  相似文献   

15.
In polycystic kidney disease (PKD), cyst lining cells show polarity abnormalities. Recent studies have demonstrated loss of cell contact in cyst cells, suggesting induction of epithelial-to-mesenchymal transition (EMT). Recently, EMT has been implicated in the pathogenesis of PKD. To explore further evidence of EMT in PKD, we examined age- and segment-specific expression of adhesion molecules and mesenchymal markers in PCK rats, an orthologous model of human autosomal-recessive PKD. Kidneys from 5 male PCK and 5 control rats each at 0 days, 1, 3, 10, and 14 wk, and 4 mo of age were serially sectioned and stained with segment-specific markers and antibodies against E-cadherin, Snail1, β-catenin, and N-cadherin. mRNAs for E-cadherin and Snail1 were quantified by real-time PCR. Vimentin, fibronectin, and α-smooth muscle actin (α-SMA) expressions were assessed as mesenchymal markers. E-cadherin expression pattern was correlated with the disease pathology in that tubule segments showing the highest expression in control had much severer cyst formation in PCK rats. In PCK rats, E-cadherin and β-catenin in cystic tubules was attenuated and localized to lateral areas of cell-cell contact, whereas nuclear expression of Snail1 increased in parallel with cyst enlargement. Some epithelial cells in large cysts derived from these segments, especially in adjacent fibrotic areas, showed positive immunoreactivity for vimentin and fibronectin. In conclusion, these findings suggest that epithelial cells in cysts acquire mesenchymal features in response to cyst enlargement and participate in progressive renal fibrosis. Our study clarified the nephron segment-specific cyst profile related to EMT in PCK rats. EMT may play a key role in polycystic kidney disease.  相似文献   

16.
The healthy synovial lining layer consists of a single cell layer that regulates the transport between the joint cavity and the surrounding tissue. It has been suggested that abnormalities such as somatic mutations in the p53 tumor-suppressor gene contribute to synovial hyperplasia and invasion in rheumatoid arthritis (RA). In this study, expression of epithelial markers on healthy and diseased synovial lining tissue was examined. In addition, we investigated whether a regulated process, resembling epithelial to mesenchymal transition (EMT)/fibrosis, could be responsible for the altered phenotype of the synovial lining layer in RA. Synovial tissue from healthy subjects and RA patients was obtained during arthroscopy. To detect signs of EMT, expression of E-cadherin (epithelial marker), collagen type IV (indicator of the presence of a basement membrane) and alpha-smooth muscle actin (alpha-sma; a myofibroblast marker) was investigated on frozen tissue sections using immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from healthy subjects were isolated and subjected to stimulation with synovial fluid (SF) from two RA patients and to transforming growth factor (TGF)-beta. To detect whether EMT/fibrotic markers were increased, expression of collagen type I, alpha-sma and telopeptide lysylhydroxylase (TLH) was measured by real time PCR. Expression of E-cadherin and collagen type IV was found in healthy and arthritic synovial tissue. Expression of alpha-sma was only found in the synovial lining layer of RA patients. Stimulation of healthy FLSs with SF resulted in an upregulation of alpha-sma and TLH mRNA. Collagen type I and TLH mRNA were upregulated after stimulation with TGF-beta. Addition of bone morphogenetic protein (BMP)-7 to healthy FLS stimulated with SF inhibited the expression of alpha-sma mRNA. The finding that E-cadherin and collagen type IV are expressed in the lining layer of healthy and arthritic synovium indicates that these lining cells display an epithelial-like phenotype. In addition, the presence of alpha-sma in the synovial lining layer of RA patients and induction of fibrotic markers in healthy FLSs by SF from RA patients indicate that a regulated process comparable to EMT might cause the alteration in phenotype of RA FLSs. Therefore, BMP-7 may represent a promising agent to counteract the transition imposed on synoviocytes in the RA joint.  相似文献   

17.
18.
19.
20.
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号