首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio cholerae relies on two main virulence factors—toxin-coregulated pilus (TCP) and cholera toxin—to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.  相似文献   

2.
Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera‐like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co‐regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large β‐sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side‐chains at one end and structural homology to the pore‐forming proteins perfringolysin O and α‐haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.  相似文献   

3.
The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 310-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 310-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.  相似文献   

4.
Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.  相似文献   

5.
In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.  相似文献   

6.
The plasmid R64 thin pilus identified as a type IV pilus.   总被引:12,自引:5,他引:7       下载免费PDF全文
The entire nucleotide sequence of the pil region of the IncI1 plasmid R64 was determined. Analysis of the sequence indicated that 14 genes, designated pilI through pilV, are involved in the formation of the R64 thin pilus. Protein products of eight pil genes were identified by the maxicell procedure. The pilN product was shown to be a lipoprotein by an experiment using globomycin. A computer search revealed that several R64 pil genes have amino acid sequence homology with proteins involved in type IV pilus biogenesis, protein secretion, and transformation competence. The pilS and pilV products were suggested to be prepilins for the R64 thin pilus, and the pilU product appears to be a prepilin peptidase. These results suggest that the R64 thin pilus belongs to the type IV family, specifically group IVB, of pili. The requirement of the pilR and pilU genes for R64 liquid mating was demonstrated by constructing their frameshift mutations. Comparison of three type IVB pilus biogenesis systems, the pil system of R64, the toxin-coregulated pilus (tcp) system of Vibrio cholerae, and the bundle-forming pilus (bfp) system of enteropathogenic Escherichia coli, suggests that they have evolved from a common ancestral gene system.  相似文献   

7.
The IncI1 plasmid R64 produces two kinds of sex pili: a thin pilus and a thick pilus. The thin pilus, which belongs to the type IV family, is required only for liquid matings. Fourteen genes, pilI to -V, were found in the DNA region responsible for the biogenesis of the R64 thin pilus (S.-R. Kim and T. Komano, J. Bacteriol. 179:3594-3603, 1997). In this study, we introduced frameshift mutations into each of the 14 pil genes to test their requirement for R64 thin pilus biogenesis. From the analyses of extracellular secretion of thin pili and transfer frequency in liquid matings, we found that 12 genes, pilK to -V, are required for the formation of the thin pilus. Complementation experiments excluded the possible polar effects of each mutation on the expression of downstream genes. Two genes, traBC, were previously shown to be required for the expression of the pil genes. In addition, the rci gene is responsible for modulating the structure and function of the R64 thin pilus via the DNA rearrangement of the shufflon. Altogether, 15 genes, traBC, pilK through pilV, and rci, are essential for R64 thin pilus formation and function.  相似文献   

8.
9.
The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65°C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.  相似文献   

10.
Type IV pili (Tfp) are arguably the most widespread pili in bacteria, whose biogenesis requires a complex machinery composed of as many as 18 different proteins. This includes the conserved outer membrane-localized secretin, which forms a pore through which Tfp emerge on the bacterial surface. Although, in most model species studied, secretin oligomerization and functionality requires the action of partner lipoproteins, structural information regarding these molecules is limited. We report the high-resolution crystal structure of PilW, the partner lipoprotein of the type IV pilus secretin PilQ from Neisseria meningitidis, which defines a conserved class of Tfp biogenesis proteins involved in the formation and/or stability of secretin multimers in a wide variety of bacteria. The use of the PilW structure as a blueprint reveals an area of high-level sequence conservation in homologous proteins from different pathogens that could reflect a possible secretin-binding site. These results could be exploited for the development of new broad-spectrum antibacterials interfering with the biogenesis of a widespread virulence factor.  相似文献   

11.
A diarrheogenic strain of non-O1/non-O139 Vibrio cholerae (10325) belonging to serogroup O34 was earlier shown to express a new type of pilus composed of a 20-kDa subunit protein. Amino-terminal sequence data (determined up to 20 amino acid residues) of this protein showed it to be different from the subunit proteins of other known types of pili of V. cholerae. On the other hand, it showed complete homology with the corresponding sequence of a 22-kDa outer membrane protein (OmpW) of V. cholerae. Expression of 10325 pili was favored in AKI rather than in NB medium and at 30°C rather than at 37°C. Further, cultural conditions favoring pilus expression also enhanced autoagglutination and adherence properties of strain 10325. An antiserum to the 20-kDa protein induced passive protection against challenge with the parent organism 10325, but not against V. cholerae O1 strains. Such protection was shown to be mediated by inhibition of intestinal colonization in vivo.  相似文献   

12.
Many bacterial pathogens, including Pseudomonas aeruginosa, use type IVa pili (T4aP) for attachment and twitching motility. T4aP are composed primarily of major pilin subunits, which are repeatedly assembled and disassembled to mediate function. A group of pilin-like proteins, the minor pilins FimU and PilVWXE, prime pilus assembly and are incorporated into the pilus. We showed previously that minor pilin PilE depends on the putative priming subcomplex PilVWX and the non-pilin protein PilY1 for incorporation into pili, and that with FimU, PilE may couple the priming subcomplex to the major pilin PilA, allowing for efficient pilus assembly. Here we provide further support for this model, showing interaction of PilE with other minor pilins and the major pilin. A 1.25 Å crystal structure of PilEΔ1–28 shows a typical type IV pilin fold, demonstrating how it may be incorporated into the pilus. Despite limited sequence identity, PilE is structurally similar to Neisseria meningitidis minor pilins PilXNm and PilVNm, recently suggested via characterization of mCherry fusions to modulate pilus assembly from within the periplasm. A P. aeruginosa PilE-mCherry fusion failed to complement twitching motility or piliation of a pilE mutant. However, in a retraction-deficient strain where surface piliation depends solely on PilE, the fusion construct restored some surface piliation. PilE-mCherry was present in sheared surface fractions, suggesting that it was incorporated into pili. Together, these data provide evidence that PilE, the sole P. aeruginosa equivalent of PilXNm and PilVNm, likely connects a priming subcomplex to the major pilin, promoting efficient assembly of T4aP.  相似文献   

13.
As mediators of adhesion, autoaggregation and bacteria‐induced plasma membrane reorganization, type IV pili are at the heart of Neisseria meningitidis infection. Previous studies have proposed that two minor pilins, PilV and PilX, are displayed along the pilus structure and play a direct role in mediating these effects. In contrast with this hypothesis, combining imaging and biochemical approaches we found that PilV and PilX are located in the bacterial periplasm rather than along pilus fibers. Furthermore, preventing exit of these proteins from the periplasm by fusing them to the mCherry protein did not alter their function. Deletion of the pilV and pilX genes led to a decrease in the number, but not length, of pili displayed on the bacterial surface indicating a role in the initiation of pilus biogenesis. By finely regulating the expression of a central component of the piliation machinery, we show that the modest reductions in the number of pili are sufficient to recapitulate the phenotypes of the pilV and pilX mutants. We further show that specific type IV pili‐dependent functions require different ranges of pili numbers.  相似文献   

14.
Thin pili of the closely related IncI1 plasmids ColIb-P9 and R64 are required only for liquid mating and belong to the type IV family of pili. They were sedimented by ultracentrifugation from culture medium in which Escherichia coli cells harboring ColIb-P9- or R64-derived plasmids had been grown, and then the pili were purified by CsCl density gradient centrifugation. In negatively stained thin pilus samples, long rods with a diameter of 6 nm, characteristic of type IV pili, were observed under an electron microscope. Gel electrophoretic analysis of purified ColIb-P9 thin pili indicated that thin pili consist of two kinds of proteins, pilin and the PilV protein. Pilin was demonstrated to be the product of the pilS gene. Pilin was first synthesized as a 22-kDa prepilin from the pilS gene and subsequently processed to a 19-kDa protein by the function of the pilU product. The N-terminal amino group of the processed protein was shown to be modified. The C-terminal segments of the pilV products vary among six or seven different types, as a result of shufflon DNA rearrangements of the pilV gene. These PilV proteins were revealed to comprise a minor component of thin pili. Formation of PilV-specific cell aggregates by ColIb-P9 and R64 thin pili was demonstrated and may play an important role in liquid mating.  相似文献   

15.
BackgroundUropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis.Scope of reviewThe review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly.Major conclusionsThe usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus.Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner.The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described.General significanceThe combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.  相似文献   

16.
Colonization of the human small intestine by Vibrio cholerae requires the type 4 toxin co-regulated pilus (TCP). Genes encoding the structure and biogenesis functions of TCP are organized within an operon located on the Vibrio Pathogenicity Island (VPI). In an effort to elucidate the functions of proteins involved in TCP biogenesis, in frame deletions of all of the genes within the tcp operon coding for putative pilus biogenesis proteins have been constructed and the resulting mutants characterized with respect to the assembly and function of TCP. As a result of this analysis, we have identified the product of one of these genes, tcpF, as a novel secreted colonization factor. Chromosomal deletion of tcpF yields a mutant that retains in vitro phenotypes associated with the assembly of functional TCP yet is severely attenuated for colonization of the infant mouse intestine. Furthermore, we have determined that the mechanism by which TcpF is translocated across the bacterial outer membrane requires the TCP biogenesis machinery and is independent of the type II extracellular protein secretion (EPS) system. These results suggest a dual role for the TCP biogenesis apparatus in V. cholerae pathogenesis and a novel mechanism of intestinal colonization mediated by a soluble factor.  相似文献   

17.
The secreton (type II secretion) and type IV pilus biogenesis branches of the general secretory pathway in Gram-negative bacteria share many features that suggest a common evolutionary origin. Five components of the secreton, the pseudopilins, are similar to subunits of type IV pili. Here, we report that when the 15 genes encoding the pullulanase secreton of Klebsiella oxytoca were expressed on a high copy number plasmid in Escherichia coli, one pseudopilin, PulG, was assembled into pilus-like bundles. Assembly of the 'secreton pilus' required most but not all of the secreton components that are essential for pullulanase secretion, including some with no known homologues in type IV piliation machineries. Two other pseudopilins, pullulanase and two outer membrane-associated secreton components were not associated with pili. Thus, PulG is probably the major component of the pilus. Expression of a type IV pilin gene, the E.coli K-12 gene ppdD, led to secreton-dependent incorporation of PpdD pilin into pili without diminishing pullulanase secretion. This is the first demonstration that pseudopilins can be assembled into pilus-like structures.  相似文献   

18.
Contact Stimulation of Tgl and Type IV Pili in Myxococcus xanthus   总被引:3,自引:0,他引:3       下载免费PDF全文
Myxococcus xanthus tgl mutants lack social motility and type IV pili but can be transiently stimulated to swarm and to make pili by contacting tgl+ cells. The absence of pili in tgl mutants is shown not to be due to the absence of pilin. The rate of pilus elongation after Tgl stimulation is shown to be similar to the rate of pilus elongation in wild-type cells, using a new more rapid assay for stimulation.  相似文献   

19.
20.
Py B  Loiseau L  Barras F 《EMBO reports》2001,2(3):244-248
The type II secretion machinery allows most Gram-negative bacteria to deliver virulence factors into their surroundings. We report that in Erwinia chrysanthemi, GspE (the putative NTPase), GspF, GspL and GspM constitute a complex in the inner membrane that is presumably used as a platform for assembling other parts of the secretion machinery. The GspE–GspF–GspL–GspM complex was demonstrated by two methods: (i) co-immunoprecipitation of GspE–GspF–GspL with antibodies raised against either GspE or GspF; (ii) interactions in the yeast two-hybrid system between GspF and GspE, GspF and GspL, GspL and GspM. GspL was found to have an essential role in complex formation. We propose a model in which the GspE–GspF–GspL–GspM proteins constitute a building block within the secretion machinery on top of which another building block, referred to as a pseudopilus, assembles. By analogy, we predict that a similar platform is required for the biogenesis of the type IV pilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号