首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
匍匐茎草本蛇莓对基质养分条件的克隆可塑性   总被引:5,自引:0,他引:5  
  相似文献   

2.
匍匐茎草本蛇莓对基质养分条件的克隆可塑性   总被引:18,自引:0,他引:18  
A pot experiment with three levels of nutrient (N, P, K) supply was carried out to investigate clonal plasticity of stoloniferous herb Duchesnea indica Focke in response to nutrient availability. The plants had greater biomass at higher levels of nutrient availability. The root/shoot ratio of the plants changed with the nutrient availability in the following order: low level > high level > medium level. They had the largest biomass allocation to stolon at the medium level of nutrient availability. The biomass allocation to petiole did not respond to the treatments. The plants formed more stolons and ramets at the high and medium levels than the low level of nutrient availability. The petiole length, specific petiole weight(mg/cm)and stolon internode length of the plants did not respond to the treatments, while the specific stolon weight (mg/cm)of the plants was greater at the high and medium levels than the low level of nutrient availability. The results have been discussed in the context of adaptation of clonal plants to environmental heterogeneity.  相似文献   

3.
The phalanx and querilla are two extreme architectures. There should be a continuum of interim architecture between phalanx and querilla. The author gives an index describing the continuum v=ln /Inn( ≤v≤1), and discusses the response of spacer length to habitat patchy quality.  相似文献   

4.
在深度遮光(光照强度为高光条件的6.25%,约为自然光照的5.3%)或低养分条件下,金戴戴(Halerpestes ruthenica Ovcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小,而比节间长和比叶柄长显著增加.在低养分条件下,金戴戴匍匐茎平均节间长显著增加,而匍匐茎分枝强度和分株数显著减小.这些结果与克隆植物觅食模型相符合,表明当生长于异质性生境中,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取.在深度遮光条件下,金戴戴平均间隔子长度(即平均节间长和平均叶柄长)均显著减小.这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光(光照强度为高光条件的13%~75%,>10%的自然光照)的反应不同.这表明,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为.光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应.在高光条件下,基质养分对这些性状有十分显著的影响;而在低光条件下,基质养分条件对这些性状不产生影响或影响较小.这表明,光照强度影响金戴戴对基质养分的可塑性反应.在深度遮光或低养分条件下,金戴戴可能通过减小匍匐茎节间粗度(增加比节间长)来增加或维持其相对长度,从而更有机会逃离资源丰度低的斑块.  相似文献   

5.
在深度遮光 (光照强度为高光条件的 6 .2 5% ,约为自然光照的 5.3% )或低养分条件下 ,金戴戴 (HalerpestesruthenicaOvcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小 ,而比节间长和比叶柄长显著增加。在低养分条件下 ,金戴戴匍匐茎平均节间长显著增加 ,而匍匐茎分枝强度和分株数显著减小。这些结果与克隆植物觅食模型相符合 ,表明当生长于异质性生境中 ,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取。在深度遮光条件下 ,金戴戴平均间隔子长度 (即平均节间长和平均叶柄长 )均显著减小。这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光 (光照强度为高光条件的 1 3%~ 75% ,>1 0 %的自然光照 )的反应不同。这表明 ,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为。光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应。在高光条件下 ,基质养分对这些性状有十分显著的影响 ;而在低光条件下 ,基质养分条件对这些性状不产生影响或影响较小。这表明 ,光照强度影响金戴戴对基质养分的可塑性反应。在深度遮光  相似文献   

6.
自然界中植物生长所需资源通常呈异质性分布, 具有发达匍匐茎的野牛草(Buchloe dactyloides)在蔓延过程中相连克隆分株常生活在异质性的光环境中。有研究证明, 在异质性光条件下, 植株幼叶的叶片解剖结构受成熟叶所处光照条件的影响, 而异质性光条件下克隆分株的叶片形态解剖结构是否也受相连分株所处光照条件的影响则未见报道。通过设置高光(全光照)和低光(遮阴)两个水平, 对由匍匐茎相连的野牛草克隆分株施以同质和异质性光处理, 研究了异质性光对野牛草叶片解剖结构的影响。结果发现: 在异质性光环境中, 遮阴的野牛草克隆分株的主脉直径、维管束鞘细胞个数、叶片厚度以及近轴侧和远轴侧叶肉细胞的厚度均显著降低; 同质性的低光处理对这些指标则没有显著影响。在异质性光处理下, 未遮阴姊株近轴侧和远轴侧叶肉细胞的厚度以及远轴侧的气孔大小显著增加, 而未遮阴的妹株近轴侧和远轴侧叶肉细胞的厚度、气孔密度和气孔大小、叶片厚度和维管束鞘细胞个数则会降低。同质高光处理下克隆分株近轴侧和远轴侧的气孔密度和气孔大小显著高于同质低光。野牛草克隆分株近轴侧和远轴侧叶肉细胞的厚度、气孔密度和气孔大小受相连分株所处光照条件的显著影响。该研究结果表明: 未遮阴的姊株因为与遮阴的妹株相连而显著受益, 而未遮阴的妹株则因为与遮阴的姊株相连而损耗严重; 在异质性光处理下, 遮阴分株叶片形态上缩减的可塑性生长是为减少维持其存活的消耗, 提高遮阴分株存活率的一种适应性表现。  相似文献   

7.
Current knowledge of resistance (R) genes and their use for genetic improvement in buffalograss (Buchloe dactyloides [Nutt.] Engelm.) lag behind most crop plants. This study was conducted to clone and characterize cDNA encoding R gene-like (RGL) sequences in buffalograss. This report is the first to clone and characterize of buffalograss RGLs. Degenerate primers designed from the conserved motifs of known R genes were used to amplify RGLs and fragments of expected size were isolated and cloned. Sequence analysis of cDNA clones and analysis of putative translation products revealed that most encoded amino acid sequences shared the similar conserved motifs found in the cloned plant disease resistance genes PRS2, MLA6, L6, RPMI, and Xa1. These results indicated diversity of the R gene candidate sequences in buffalograss. Analysis of 5′ rapid amplification of cDNA ends (RACE), applied to investigate upstream of RGLs, indicated that regulatory sequences such as TATA box were conserved among the RGLs identified. The cloned RGL in this study will further enhance our knowledge on organization, function, and evolution of R gene family in buffalo grass. With the sequences of the primers and sizes of the markers provided, these RGL markers are readily available for use in a genomics-assisted selection in buffalograss.  相似文献   

8.
A mechanistic model of one hormone regulating both sexes in flowering plants was tested in buffalograss (Buchloe dactyloides). This model assumes that one hormone has male and female cell receptors to inhibit one sex and induce the other independently. Three components—the normal range of hormone level in the plant and the sensitivity levels of the two receptors—interact to regulate sex expression. The study organism, buffalograss, is usually considered dioecious, but natural populations consist of varying proportions of male, female, and monoecious plants. Prior research with growth regulators had shown that only gibberellin (GA) had consistent and significant effects on sex expression in this species. To test the model assumption of a hormone with a dual function, GA and a GA inhibitor (paclobutrazol, PAC) were applied to three monoecious genotypes; in two of the genotypes the GA treatment yielded a significantly higher proportion of male inflorescences, and this transition involved both inducing male and inhibiting female. PAC treatment produced exclusively female inflorescences, illustrating the dual effects of GA. To test the predictability of the model, GA was applied to two dwarf female genotypes. These plants were transformed into neuter and near-neuter plants with normal height and vegetative growth, as predicted by our model for genotypes with a physiologically wide overlapping of male and female sterile regions. The model also predicts that male or female plants would be induced to produce inflorescences of the other sex if the hormone level could be shifted from one side of the overlapping sterile regions to the other. This was verified by applying high levels of GA to a normal female genotype that resulted in the production of male inflorescences. However, this is the only normal female that has responded to GA application by producing male inflorescences, and males lose vigor and/or die without producing female inflorescences at high levels of PAC. The model suggests that the constancy of these males and females is due to the relative location of the sensitivity levels in relation to each other and to the hormone range. We conclude that the one-hormone model can facilitate both applied and basic research.  相似文献   

9.
Huang  Bingru 《Plant and Soil》1999,208(2):179-186
Effects of localized soil drought stress on water relations, root growth, and nutrient uptake were examined in drought tolerant ‘Prairie’ buffalograss [Buchloe dactyloides (Nutt.) Engelm.] and sensitive ‘Meyer’ zoysiagrass (Zoysia japonica Steud.). Grasses were grown in small rhizotrons in a greenhouse and subjected to three soil moisture regimes: (1) watering the entire 80-cm soil profile (well-watered control); (2) drying 0–40 cm soil and watering the lower 40 cm (partially dried); (3) and drying the entire soil profile (fully dried). Drying the 0–40 cm soil for 28 days had no effect on leaf water potential (Ψ leaf ) in Prairie buffalograss compared to the well-watered control but reduced that in Meyer zoysiagrass. Root elongation rate was greater for Prairie buffalograss than Meyer zoysiagrass under well-watered or fully dried conditions. Rooting depth increased with surface soil drying; with Prairie buffalograss having a larger proportion of roots in the lower 40 cm than Meyer zoysiagrass. The higher rates of water uptake in the deeper soil profile in the partially dried compared to the well-watered treatment and by Prairie buffalograss compared to Meyer zoysiagrass could be due to differences in root distribution. Root 15N uptake for Prairie buffalograss was higher in 0–20 cm drying soil in the partially dried treatment than in the fully dried treatment. Diurnal fluctuations in soil water content in the upper 20 cm of soil when the lower 40 cm were well-watered indicated water efflux from the deeper roots to the drying surface soil. This could help sustain root growth, maintain nutrient uptake in the upper drying soil layer, and prolong turfgrass growth under localized drying conditions, especially for the deep-rooted Prairie buffalograss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
野牛草成熟胚离体培养及植株再生   总被引:3,自引:0,他引:3  
1植物名称野牛草[Buchloe dactyloides(Nutt.)texoka]. 2材料类别成熟胚. 3培养条件(1)愈伤组织诱导培养基:MS 2,4-D1.5~6.0 mg·L-1(单位下同) 6-BA 0.1 脯氨酸1 000 水解酪蛋白(CH)500 谷氨酰胺500 α-酮戊二酸100 硫代硫酸银(STS)5;(2)愈伤组织继代培养基:MS 3/2MS(有机) 2,4-D 2.5 6-BA 0.1 CH1 000 聚乙烯吡咯烷酮(PVP)200或维生素C(vC)200;(3)再生培养基:不附加任何植物生长调节物质的MS基本培养基(MS0).所有培养基中均添加3%蔗糖、0.56%琼脂,pH 5.8.愈伤组织诱导及继代培养为暗培养,不定芽分化及植株再生过程中光照12 h·d-1,光照度为1 500lx,培养温度为(25±1)℃.  相似文献   

11.
Characterizing and inferring the buffalograss [Buchloe dactyloides (Nutt.) Engelm.] genome organization and its relationship to geographic distribution are among the purposes of the buffalograss breeding and genetics program. This buffalograss study was initiated to: (1) better understand the buffalograss ploidy complex using various marker systems representing nuclear and organelle genomes; (2) determine whether the geographic distribution was related to nuclear and organelle genome variation; and (3) compare the genetic structure of accessions with different ploidy levels. The 20 buffalograss genotypes (15 individuals from each genotype) that were studied included diploid, tetraploid, pentaploid, and hexaploid using nuclear (intersimple sequence repeat (ISSRs), simple sequence repeat (SSRs), sequence related amplified polymorphism (SRAPs), and random amplified polymorphic DNA (RAPDs)) and cytoplasmic markers (mtDNA and cpDNA). There was a significant correlation between the ploidy levels and number of alleles detected using nuclear DNA (ISSR, SSR, and SRAP, r=0.39, 0.39, and 0.41, P<0.05, respectively), but no significant correlation was detected when mitochondrial (r=0.17, P<0.05) and chloroplast (r=0.11, P<0.05) DNA data sets were used. The geographic distribution of buffalograss was not correlated with nuclear and organelle genome variation for the genotypes studied. Among the total populations sampled, regression analysis indicated that geographic distance could not explain genetic differences between accessions. However, genetic distances of those populations from the southern portion of buffalograss adaptation were significantly correlated with geographic distance (r= 0.48, P<0.05). This result supports the hypothesis that genetic relationship among buffalograss populations cannot be estimated based only on geographic proximity.  相似文献   

12.
野牛草叶片活性氧及其清除系统对水分胁迫的响应   总被引:8,自引:1,他引:8  
逆境条件下活性氧产生及其清除效率是衡量植物抗性的重要指标,而活性氧对植物组织的氧化伤害和抗氧化酶活性常因材料的遗传或生理差异性而发生变化。以同一基因型的野牛草(Buchloe dactyloides(Nutt.)Engelm'texoka')克隆分株叶片为材料,采用Hoagland营养液培养,研究了10%、20%和30%PEG-6000模拟干旱胁迫下,野牛草叶片活性氧的产生、脂质过氧化和抗氧化酶活性变化规律。结果表明:随着PEG-6000浓度的增加及胁迫时间的延长,超氧阴离子(O2-.)的产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量均显著增加;超氧化物歧化酶(SOD EC1.15.1.1)、愈创木酚过氧化物酶(G-POD EC1.11.1.7)和过氧化氢酶(CATEC1.11.1.6)活性呈先上升后下降的变化趋势;SOD、G-POD与CAT活性达到峰值的时间随PEG-6000浓度的增加而提前。认为水分胁迫下,抗氧化酶可有效清除活性氧自由基,但随胁迫时间的延长,抗氧化酶活性受到抑制。  相似文献   

13.
研究了匍匐茎型克隆草本金戴戴(Halerpestes ruthenica) 4种基株(基因型)对不同盐分处理(0,85.5, 171.0, 256.5和342.0 mM NaCl)的表型可塑性。随着盐分浓度的增加,实验植物与生长相关的性状指标 (如植株干重、总叶面积、分株数和总匍匐茎长度) 显著减小。植株干重、总叶面积和总匍匐茎长度具有显著的基株间差异。实验植物与形态相关的性状指标 (如平均叶柄长和根冠比) 对盐分梯度具有可塑性并具有显著的基株间差异;而其它形态指标 (如平均节间长、比节间长和比叶柄长)  相似文献   

14.
Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition.This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient.The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.  相似文献   

15.
Responses of Clonal Reef Taxa to Environmental Change   总被引:5,自引:0,他引:5  
SYNOPSIS. Many reef taxa are predominantly clonal, and theirclones can spread over tens of meters and live for hundredsof years. Colony growth, which produces large colonies, andvegetative propagation, which can generate many clonal replicatesof colonies, affect the response of clonal taxa to climate changethrough a variety of mechanisms, some of which mitigate andsome which amplify effects on individuals. The large numbersof replicate individuals generated among clonal taxa may enablesome individuals to survive catastrophic mortality events suchas storms and then expand following the perturbation. In thosecircumstances clonality buffers the effects of environmentalchange. Conversely, the genetic uniformity of populations dominatedby few genotypes may leave clonal taxa more susceptible to physiologicstress than aclonal taxa. Consequently, clonal species may bemore sensitive to climate change that has chronic and/or acuteeffects on survival. Chronic stresses that reduce recruitmentwill have less obvious effects on clonal taxa than aclonal taxa.Under conditions of reduced recruitment, clonality will allowsome species to persist as relict populations due to the longevityof genets. The presence of relict populations has the appearanceof resistance to climate change. In fact, these taxa are responding,but at a slower rate. The long generation time of genets willslow the pace of evolution among clonal species, making adaptationat projected rates of climate change unlikely. The differentialresponse of species to environmental change will lead to transitionsin community structure as climate changes.  相似文献   

16.

Background

Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention.

Methodology/Principal Findings

In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed).

Conclusions/Significance

Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.  相似文献   

17.
克隆植物矮嵩草在刈割条件下的等级反应研究   总被引:3,自引:1,他引:2  
对刈割处理下高寒矮嵩草草甸建群种矮嵩草(Kobresia humilis)构件等级中基株、分株和分蘖3个层次构件单元的数量、生物量及其变异系数的变化进行了研究。结果表明.矮嵩草株丛刈割部分和未刈割部分被测性状在处理间的差异显著性以及作构件等级间变异系数的大小均为分蘖层次〉分株层次〉基株层次。刈割后相同时期内,分蘖层次对相同处理的反应发叶生得最快,基株则最为迟缓。这说明在刈割后的相同时期内,构件等级中较外层次(分蘖层次)会发生更大的表型变异.对相同强度的刈割扰动发生反应也最快。由此证实矮嵩草在刈割条件下也同样会发生等级性反应。  相似文献   

18.
Ramet-pairs of Potentilla reptans L. var.sericophylla Franch from forest gap and forest understory were subjected to unshading, shading and partial shading treatments in a pot experiment. The genet biomass, total length of stolons, number of ramets, specific stolon weight, petiole length and specific petiole weight of the plant species under the shaded condition were smaller than those under the unshaded condition. The stolon internode length did not respond to the various treatments. In the plants from the forest gap, the petiloes of ramet grown in the shaded patch were longer as connected to plant part in the unshaded patch than as connected to plant part under the same shaded condition. Such modification of local response of ramet petiole to shading due to physiological integration was not observed in the plants from the understory. There was no effect of connection to ramets in shaded patches on the local response of the rest ramet characters to the partial unshading.  相似文献   

19.
研究了 3种来自中国北方林下、草地和碱化草甸匍匐茎型克隆草本植物绢毛匍匐委陵菜 (PotentillareptansL .var.sericophyllaFranch .)、鹅绒委陵菜 (P .anserinaL .)和金戴戴 (Halerpestesruthenica (Jacq .)Qvcz .)对由高光照低养分斑块和低光照高养分斑块组成的资源交互斑块性生境的适应性对策。当生长于高光照低养分条件下分株(HL分株 )与生长于低光照高养分条件下分株 (LH分株 )之间的匍匐茎连接时 ,3种克隆植物HL分株、LH分株以及整个分株对系统 (HL分株 LH分株 )的生物量均得到显著提高。同时 ,LH分株根冠比显著增加 ,而HL分株根冠比显著下降。这表明 ,当互连分株置于由低光照高养分斑块和高光照低养分斑块组成的异质性环境中时 ,3种植物克隆分株均发生了环境诱导的功能特化。克隆内资源共享以及克隆内不同分株的功能特化有利于整个分株系统对局部丰富资源的获取 ,从而能够缓解资源交互斑块性生境对克隆植物的不利影响  相似文献   

20.
研究了3种来自中国北方林下、草地和碱化草甸匍匐茎型克隆草本植物绢毛匍匐委陵菜 (Potentilla reptans L. var. sericophylla Franch.)、鹅绒委陵菜 (P. anserina L.) 和金戴戴 (Halerpestes ruthenica (Jacq.) Qvcz.) 对由高光照低养分斑块和低光照高养分斑块组成的资源交互斑块性生境的适应性对策.当生长于高光照低养分条件下分株 (HL分株) 与生长于低光照高养分条件下分株 (LH分株) 之间的匍匐茎连接时, 3种克隆植物HL分株、LH分株以及整个分株对系统 (HL分株 + LH分株) 的生物量均得到显著提高.同时, LH分株根冠比显著增加, 而HL分株根冠比显著下降.这表明, 当互连分株置于由低光照高养分斑块和高光照低养分斑块组成的异质性环境中时, 3种植物克隆分株均发生了环境诱导的功能特化.克隆内资源共享以及克隆内不同分株的功能特化有利于整个分株系统对局部丰富资源的获取, 从而能够缓解资源交互斑块性生境对克隆植物的不利影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号