首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.  相似文献   

2.
The gut microbiomes of the host are large and complex communities, which helps to maintain homeostasis, improves digestive efficiency, and promotes the development of the immune system. The small mammals distributed in Sichuan Province are the most popular species for biodiversity research in Southwest China. However, the effects of different diets on the structure and function of the gut microbial community of these small mammals are poorly understood. In this study, whole‐metagenome shotgun sequencing has been used to analyze the composition and functional structures of the gut microbiota of seven small mammals in Laojunshan National Nature Reserve, Sichuan Province, China. Taxonomic classification revealed that the most abundant phyla in the gut of seven small mammals were Bacteroides, Proteobacteria, and Firmicutes. Moreover, Hafnia, Lactobacillus, and Yersinia were the most abundant genus in the gut microbiomes of these seven species. At the functional level, we annotated a series of KEGG functional pathways, six Cazy categories, and 46,163 AROs in the gut microbiomes of the seven species. Comparative analysis found that the difference in the gut microbiomes between the Soricidea and Muridae concentrated on the increase in the F/B (Firmicutes/Bacteroides) ratio in the Soricidea group, probably driven by the high‐fat and ‐calorie digestive requirements due to their insectivorous diet. The comparative functional profiling revealed that functions related to metabolism and carbohydrates were significantly more abundant in Muridae group, which may be attributed to their high carbohydrate digestion requirements caused by their herbivorous diet. These data suggested that different diets in the host may play an important role in shaping the gut microbiota, and lay the foundation for teasing apart the influences of heritable and environmental factors on the evolution of gut microbial communities.  相似文献   

3.
The first metagenomic study of gut microbiota in patients with the alcohol dependence syndrome (ADS) has been performed in the whole-genome sequencing (“shotgun”) format. Taxonomic analysis revealed changes in the relative abundance of the predominant bacteria associated with inflammatioln (including increased levels of Ruminococcus gnavus and R. torques, and decreased levels of Faecalibacterium and Akkermansia genera). The microbiota of ADS patients was characterized by the presence of opportunistic pathogens rarely detected in metagenomes of healthy individuals from different countries. Comparative analysis of total metabolic potential revealed increased relative abundance of KEGG pathways associated with the response to oxidative stress. ADS patients also had increased levels of two specific groups of genes encoding enzymes involved in the metabolism of alcohol, as well as virulence factors. It is possible that gut microbiota of ADS patients demonstrating changes in both taxonomic and functional composition plays a role in modulating the effects of alcohol on the host body  相似文献   

4.
A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.  相似文献   

5.
A total of 30 7-week-old pigs were used to evaluate the effects of chicory inclusion on digestibility, digestive organ size and faecal microbiota. Five diets were formulated: a cereal-based control diet and four diets with inclusion of 80 and 160 g/kg chicory forage (CF80 and CF160), 80 g/kg chicory root (CR80) and a mix of 80 g/kg forage and 80 g/kg chicory root (CFR). Generally, the pigs showed a high growth rate and feed intake, and no differences between the different diets were observed. The coefficients of total tract apparent digestibility (CTTAD) of energy, organic matter and CP did not differ between the control and CF80, whereas they were impaired in diet CF160. The CTTAD of non-starch polysaccharides and especially the uronic acids were higher (P < 0.05) with chicory inclusion, with highest (P < 0.05) values for diet CF160. Coliform counts were lower and lactobacilli : coliform ratio was higher (P < 0.05) in diet CFR than in the control. Global microbial composition was investigated by terminal restriction fragment length polymorphism combined with cloning and sequencing. Analysis of gut microbiota pattern revealed two major clusters where diet CF160 differed from the control and CR80 diet. Chicory forage diets were correlated with an increased relative abundance of one species related to Prevotella and decreased abundance of two other species related to Prevotella. For diet CFR, the relative abundance of Lactobacillus johnsonii was higher than in the other diets. This study shows that both chicory forage and root can be used as fibre sources in pig nutrition and that they modulate the composition of the gut microbiota differently.  相似文献   

6.

Background

Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome.

Methodology & Principal Findings

Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high–protein, low–carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC) were collected at 8, 12 and 16 weeks of age (n = 6 per group). A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified) demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007) between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022) enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome.

Conclusions

These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary protein:carbohydrate ratio and highlight the impact of diet early in life.  相似文献   

7.
Exploring the composition and structure of the faecal microbial community improves the understanding of the role of the gut microbiota in the gastrointestinal function and the egg-laying performance of hens. Therefore, detection of hen–microbial interactions can explore a new breeding marker for the selection of egg production due to the important role of the gut microbiome in the host’s metabolism and health. Recently, the gut microbiota has been recognised as a regulator of host performance, which has led to investigations of the productive effects of changes in the faecal microbiome in various animals. In the present study, a metagenomics analysis was applied to characterise the composition and structural diversity of faecal microbial communities under two selections of egg-laying performance, high (H, n = 30) and low (L, n = 30), using 16S rRNA-based metagenomic association analysis. The most abundant bacterial compositions were estimated based on the operational classification units among samples and between the groups from metagenomic data sets. The results indicated that Firmicutes phylum has higher significant (P < 0.01) in the H group than in the L group. In addition, higher relative abundance phyla of Bacteroides and Fusobacteria were estimated in the H group than the L group, contrasting the phyla of Actinobacteria, Cyanobacteria and Proteobacteria were more relative abundance in the L group. The families (Lactobacillus, Bifidobacterium, Acinetobacter, Flavobacteriaceae, Lachnoclostridum and Rhodococcus) were more abundant in the H group based on the comparison between the H and L groups. Meanwhile, three types of phyla (Proteobacteria, Actinobacteria and Cyanobacteria) and six families (Acinetobacter, Avibacterium, Clostridium, Corynebacterium, Helicobacter and Peptoclostridium) were more abundant in the L group (P < 0.01). Overall, the selection of genotypes has enriched a relationship between the gut microbiota and the egg-laying performance. These findings suggest that the faecal microbiomes of chickens with high egg-laying performance have more diverse activities than those of chickens with low egg-laying performance, which may be related to the metabolism and health of the host and egg production variation.  相似文献   

8.
Walnuts are rich in omega-3 fatty acids, phytochemicals and antioxidants making them unique compared to other foods. Consuming walnuts has been associated with health benefits including a reduced risk of heart disease and cancer. Dysbiosis of the gut microbiome has been linked to several chronic diseases. One potential mechanism by which walnuts may exert their health benefit is through modifying the gut microbiome. This study identified the changes in the gut microbial communities that occur following the inclusion of walnuts in the diet. Male Fischer 344 rats (n=20) were randomly assigned to one of two diets for as long as 10 weeks: (1) walnut (W), and (2) replacement (R) in which the fat, fiber, and protein in walnuts were matched with corn oil, protein casein, and a cellulose fiber source. Intestinal samples were collected from the descending colon, the DNA isolated, and the V3-V4 hypervariable region of 16S rRNA gene deep sequenced on an Illumina MiSeq for characterization of the gut microbiota. Body weight and food intake did not differ significantly between the two diet groups. The diet groups had distinct microbial communities with animals consuming walnuts displaying significantly greater species diversity. Walnuts increased the abundance of Firmicutes and reduced the abundance of Bacteriodetes. Walnuts enriched the microbiota for probiotic-type bacteria including Lactobacillus, Ruminococcaceae, and Roseburia while significantly reducing Bacteroides and Anaerotruncus. The class Alphaproteobacteria was also reduced. Walnut consumption altered the gut microbial community suggesting a new mechanism by which walnuts may confer their beneficial health effects.  相似文献   

9.
取食不同食物对小菜蛾幼虫肠道细菌多样性的影响   总被引:2,自引:0,他引:2  
【目的】植食性昆虫肠道细菌的组成与其食物密切相关。本研究旨在探究小菜蛾Plutella xylostella幼虫肠道细菌多样性与其取食食物之间的关系以及它们之间相互适应的过程。【方法】本研究选取小菜蛾人工饲料品系(S)及其转寄主到结球甘蓝Brassica oleracea var. capitata、结球白菜Brassica rapa subsp. pekinensis和花椰菜Brassica olerocea var. botrytis饲养后第1代(分别为G1C, G1CC和G1WC)和第3代(分别为G3C, G3CC和G3WC)的4龄幼虫,提取小菜蛾肠道细菌基因组DNA,利用Illumina MiSeq二代高通量测序技术,分析其肠道细菌多样性和丰度。【结果】α多样性指数分析发现,取食不同食物的小菜蛾4龄幼虫肠道细菌多样性高低顺序为G1WC>G1CC>S>G1C。在菌群组成上,以人工饲料为食的S样品肠道细菌主要由厚壁菌门(Firmicutes)组成,转寄主植物后的G1C, G1CC和G1WC肠道中厚壁菌门(Firmicutes)相对丰度显著下降,G1C和G1CC小菜蛾肠道中变形菌门(Proteobacteria)相对丰度显著上升成为优势菌群,G1WC肠道中拟杆菌门(Bacteroidetes)成为优势菌群。在寄主植物上连续饲养3代后,与第1代相比,小菜蛾肠道细菌α多样性指数没有显著性改变,但在结球甘蓝和结球白菜上小菜蛾肠道菌群结构却发生了变化,相比G1C,G3C肠道中芽孢杆菌目(Bacillales)的相对丰度显著下降;相比G1CC, G3CC肠道中放线菌门(Proteobacteria)、芽单胞菌门(Gemmatimonadetes)和硝化螺旋菌门(Nitrospirae)的相对丰度均显著上升。【结论】取食人工饲料和不同寄主植物的小菜蛾幼虫肠道细菌多样性和群落构成存在显著差异,寄主植物对小菜蛾肠道微生物的结构组成具有重要的影响,且小菜蛾肠道微生物对寄主植物可能存在一个长期适应的过程。本研究为进一步探讨影响小菜蛾肠道细菌变化的因素,以及后续研究肠道细菌与寄主植物之间的互作奠定了良好的基础。  相似文献   

10.
The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice.  相似文献   

11.
《Genomics》2022,114(3):110354
Gut microbiota of freshwater carps are often investigated for their roles in nutrient absorption, enzyme activities and probiotic properties. However, little is known about core microbiota, assembly pattern and the environmental influence on the gut microbiota of the Indian major carp, rohu. The gut microbial composition of rohu reared in different culture conditions was analysed by 16S rRNA amplicon sequencing. There was variation on gut microbial diversity and composition. A significant negative correlation between dissolved oxygen content (DO) and alpha diversity was observed, thus signifying DO content as one of the key environmental factors that regulated the diversity of rohu gut microbial community. A significant positive correlation was observed between phosphate concentration and abundance of Actinobacteria in different culture conditions. Two phyla, Proteobacteria and Actinobacteria along with OTU750868 (Streptomyces) showed significant (p < 0.05) differences in their abundance among all culture conditions. The Non-metric multidimensional scaling ordination (NMDS) analysis using Bray-Curtis distances, showed the presence of unique gut microbiota in rohu compared to other herbivorous fish. Based on niche breadth, 3 OTUs were identified as core generalists, persistent across all the culture conditions whereas the specialists dominated in the rohu gut microbiota assembly. Co-occurrence network analysis revealed positive interaction within core members while mutual exclusion between core and non-core members. Predicted microbiota function revealed that different culture conditions affected the metabolic capacity of gut microbiota of rohu. The results overall indicated the significant effect of different rearing environments on gut microbiota structure, assembly and inferred community function of rohu which might be useful for effective manipulation of gut microbial communities of rohu to promote better health and growth under different husbandry settings.  相似文献   

12.
North American bison (Bison bison) are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes.  相似文献   

13.
Researchers are gaining an increasing understanding of host–gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague–Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health.  相似文献   

14.
Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to improve the survival rate and nutritive efficacy when using plant-based diets.  相似文献   

15.
The potential utility of black soldier fly larvae (BSFL) to convert animal waste into harvested protein or lipid sources for feeding animal or producing biodiesel provides a new strategy for agricultural waste management. In this study, the taxonomic structure and potential metabolic and nutrient functions of the intestinal bacterial communities of BSFL were investigated in chicken and swine manure conversion systems. Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla in the BSFL gut in both the swine and chicken manure systems. After the larvae were fed manure, the proportion of Proteobacteria in their gut significantly decreased, while that of Bacteroidetes remarkably increased. Compared with the original intestinal bacterial community, approximately 90 and 109 new genera were observed in the BSFL gut during chicken and swine manure conversion, and at least half of the initial intestinal genera found remained in the gut during manure conversion. This result may be due to the presence of specialized crypts or paunches that promote microbial persistence and bacteria–host interactions. Ten core genera were found in all 21 samples, and the top three phyla among all of the communities in terms of relative abundance were Proteobacteria, Firmicutes and Bacteroidetes. The nutrient elements (OM, TN, TP, TK and CF) of manure may partly affect the succession of gut bacterial communities with one another, while TN and CF are strongly positively correlated with the relative abundance of Providencia. Some bacterial taxa with the reported ability to synthesize amino acids, Rhizobiales, Burkholderia, Bacteroidales, etc., were also observed in the BSFL gut. Functional analysis based on genes showed that intestinal microbes potentially contribute to the nutrition of BSFL and the high-level amino acid metabolism may partly explain the biological mechanisms of protein accumulation in the BSFL body. These results are helpful in understanding the biological mechanisms of high-efficiency nutrient conversion in BSFL associated with intestinal microbes.  相似文献   

16.
Although pelvic irradiation is effective for the treatment of various cancer types, many patients who receive radiotherapy experience serious complications. Gut microbial dysbiosis was hypothesized to be related to the occurrence of radiation-induced complications in cancer patients. Given the lack of clinical or experimental data on the impact of radiation on gut microbiota, a prospective observational study of gut microbiota was performed in gynecological cancer patients receiving pelvic radiotherapy. In the current study, the overall composition and alteration of gut microbiota in cancer patients receiving radiation were investigated by 454 pyrosequencing. Gut microbial composition showed significant differences (P < 0.001) between cancer patients and healthy individuals. The numbers of species-level taxa were severely reduced after radiotherapy (P < 0.045), and the abundance of each community largely changed. In particular, the phyla Firmicutes and Fusobacterium were significantly decreased by 10% and increased by 3% after radiation therapy, respectively. In addition, overall gut microbial composition was gradually remolded after the full treatment course of pelvic radiotherapy. In this set of cancer patients, dysbiosis of the gut microbiota was linked to health status, and the gut microbiota was influenced by pelvic radiotherapy. Although further studies are needed to elucidate the relationship between dysbiosis and complications induced by pelvic radiotherapy, the current study may offer insights into the treatment of cancer patients suffering from complications after radiation therapy.  相似文献   

17.
ObjectivesDietary fiber is recognized as an important nutrient for gut health. However, research on the relations of different types of fibers (soluble and insoluble) to the human microbiota health is limited. This study aimed to identify whether higher habitual intake of soluble and/or insoluble fiber have a different influence on the composition, diversity, and abundance of microbiota.MethodsWe examined the fecal microbial composition of 92 healthy females aged 18 and above using the novel shotgun metagenomics sequencing technique. The habitual fiber intake was determined using the Saudi food frequency questionnaire. Pearson’s correlation was used for the correlations between total, soluble, and insoluble fiber and gut microbiota. α- and β-diversities were applied to acquire the distinctions in the relative abundances of bacterial taxa.ResultsOur findings show that higher dietary fiber, particularly insoluble fiber, was significantly correlated with the abundances of Bacteroides_u_s, Bacteroides uniformis, and Lactobacillus acidophilus (r = 0.26, 0.29, 0.26, p-value < 0.05, respectively). Non-significant difference was noted in the microbial α-diversity and β-diversity in low and high soluble/insoluble dietary fiber.ConclusionsCurrent findings suggest that insoluble dietary-fiber intake is favorably correlated with the health of the human gut microbiota. However, further investigations are necessary to identify the effect of types of fiber on the specific species identified in this study.  相似文献   

18.
《Genomics》2020,112(6):4760-4768
The plant microbiome influence plant health, yield and vigor and has attained a considerable attention in the present era. In the current study, native bacterial community composition and diversity colonizing Triticum aestivum L. rhizosphere at two distant geographical locations including Mirpur Azad Kashmir and Islamabad was elucidated. Based on IonS5™XL platform sequencing of respective samples targeting 16S rRNA gene that harbor V3-V4 conserved region revealed 1364 and 1254 microbial operational taxonomic units (OTUs) at ≥97% similarity and were classified into 23, 20 phyla; 70, 65 classes; 101, 87 orders; 189,180 families; 275, 271 genera and 94, 95 species. Respective predominant phyla accounting for 97.90% and 98.60% of bacterial community were Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Gemmatimonadetes. Diversity indices revealed variations in relative abundance of bacterial taxa owing to distant geographical locations however predominant bacterial taxa at both locations were similar. These findings paved a way to dissect consequence of associated microbiota on future wheat production system.  相似文献   

19.
Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.  相似文献   

20.
Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号