共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 +/- 0.24 mol of acetate and 0.16 +/- 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-13C]crotonate was metabolized to [1,2-(13)C]acetate and [1,2,3,4,5,7-(13)C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [13C]sodium bicarbonate formed [6-(13)C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-(13)C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [13C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-(13)C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO2 addition, rather than the use of the intact four-carbon skeleton of crotonate. 相似文献
2.
Cyclohexane Carboxylate and Benzoate Formation from Crotonate in Syntrophus aciditrophicus 下载免费PDF全文
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 ± 0.24 mol of acetate and 0.16 ± 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-13C]crotonate was metabolized to [1,2-13C]acetate and [1,2,3,4,5,7-13C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [13C]sodium bicarbonate formed [6-13C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-13C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [13C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-13C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO2 addition, rather than the use of the intact four-carbon skeleton of crotonate. 相似文献
3.
John M. Muroski Janine Y. Fu Hong Hanh Nguyen Neil Q. Wofford Housna Mouttaki Kimberly L. James Michael J. McInerney Robert P. Gunsalus Joseph A. Loo Rachel R. Ogorzalek Loo 《Molecular & cellular proteomics : MCP》2022,21(4):100215
Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia. 相似文献
4.
Benzoate Fermentation by the Anaerobic Bacterium Syntrophus aciditrophicus in the Absence of Hydrogen-Using Microorganisms 总被引:1,自引:0,他引:1 下载免费PDF全文
The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum hungatei produced 3 mol of acetate and 0.75 mol of methane per mol of benzoate. The growth yield of the S. aciditrophicus pure culture was 6.9 g (dry weight) per mol of benzoate metabolized, whereas the growth yield of the S. aciditrophicus-M. hungatei coculture was 11.8 g (dry weight) per mol of benzoate. Cyclohexane carboxylate was metabolized by S. aciditrophicus only in a coculture with a hydrogen user and was not metabolized by S. aciditrophicus pure cultures. Cyclohex-1-ene carboxylate was incompletely degraded by S. aciditrophicus pure cultures until a free energy change (ΔG′) of −9.2 kJ/mol was reached (−4.7 kJ/mol for the hydrogen-producing reaction). Cyclohex-1-ene carboxylate, pimelate, and glutarate transiently accumulated at micromolar levels during growth of an S. aciditrophicus pure culture with benzoate. High hydrogen (10.1 kPa) and acetate (60 mM) levels inhibited benzoate metabolism by S. aciditrophicus pure cultures. These results suggest that benzoate fermentation by S. aciditrophicus in the absence of hydrogen users proceeds via a dismutation reaction in which the reducing equivalents produced during oxidation of one benzoate molecule to acetate and carbon dioxide are used to reduce another benzoate molecule to cyclohexane carboxylate, which is not metabolized further. Benzoate fermentation to acetate, CO2, and cyclohexane carboxylate is thermodynamically favorable and can proceed at free energy values more positive than −20 kJ/mol, the postulated minimum free energy value for substrate metabolism. 相似文献
5.
Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. 总被引:2,自引:0,他引:2
The anaerobic bacterium Syntrophus aciditrophicus metabolized benzoate in pure culture in the absence of hydrogen-utilizing partners or terminal electron acceptors. The pure culture of S. aciditrophicus produced approximately 0.5 mol of cyclohexane carboxylate and 1.5 mol of acetate per mol of benzoate, while a coculture of S. aciditrophicus with the hydrogen-using methanogen Methanospirillum hungatei produced 3 mol of acetate and 0.75 mol of methane per mol of benzoate. The growth yield of the S. aciditrophicus pure culture was 6.9 g (dry weight) per mol of benzoate metabolized, whereas the growth yield of the S. aciditrophicus-M. hungatei coculture was 11.8 g (dry weight) per mol of benzoate. Cyclohexane carboxylate was metabolized by S. aciditrophicus only in a coculture with a hydrogen user and was not metabolized by S. aciditrophicus pure cultures. Cyclohex-1-ene carboxylate was incompletely degraded by S. aciditrophicus pure cultures until a free energy change (DeltaG') of -9.2 kJ/mol was reached (-4.7 kJ/mol for the hydrogen-producing reaction). Cyclohex-1-ene carboxylate, pimelate, and glutarate transiently accumulated at micromolar levels during growth of an S. aciditrophicus pure culture with benzoate. High hydrogen (10.1 kPa) and acetate (60 mM) levels inhibited benzoate metabolism by S. aciditrophicus pure cultures. These results suggest that benzoate fermentation by S. aciditrophicus in the absence of hydrogen users proceeds via a dismutation reaction in which the reducing equivalents produced during oxidation of one benzoate molecule to acetate and carbon dioxide are used to reduce another benzoate molecule to cyclohexane carboxylate, which is not metabolized further. Benzoate fermentation to acetate, CO(2), and cyclohexane carboxylate is thermodynamically favorable and can proceed at free energy values more positive than -20 kJ/mol, the postulated minimum free energy value for substrate metabolism. 相似文献
6.
In methanogenic environments, the main fate of benzoate is its oxidization to acetate, H(2) and CO(2) by syntrophic associations of hydrogen-producing benzoate degraders and hydrogen-using methanogens. Here, we report the use of benzoate as an electron acceptor. Pure cultures of S. aciditrophicus simultaneously degraded crotonate and benzoate when both substrates were present. The growth rate was 0.007 h(-1) with crotonate and benzoate present compared with 0.025 h(-1) with crotonate alone. After 8 days of incubation, 4.12 +/- 0.50 mM of cyclohexane carboxylate and 8.40 +/- 0.61 mM of acetate were formed and 4.0 +/- 0.04 mM of benzoate and 4.8 +/- 0.5 mM of crotonate were consumed. The molar growth yield was 22.7 +/- 2.1 g (dry wt) of cells per mol of crotonate compared with about 14.0 +/- 0.1 g (dry wt) of cells per mol of crotonate when S. aciditrophicus was grown with crotonate alone. Cultures grown with [ring-(13)C]-benzoate and unlabelled crotonate initially formed [ring-(13)C]-labelled cyclohexane carboxylate. No (13)C-labelled acetate was detected. In addition to cyclohexane carboxylate, (13)C-labelled cyclohex-1-ene carboxylate was detected as an intermediate. Once almost all of the benzoate was gone, carbon isotopic analyses showed that cyclohexane carboxylate was formed from both labelled and non-labelled metabolites. Glutarate and pimelate were also detected at this time and carbon isotopic analyses showed that each was made from a mixture labelled and non-labelled metabolites. The increase in molar growth yield with crotonate and benzoate and the formation of [ring-(13)C]-cyclohexane carboxylate from [ring-(13)C]-benzoate in the presence of crotonate are consistent with benzoate serving as an electron acceptor. 相似文献
7.
Elshahed MS Bhupathiraju VK Wofford NQ Nanny MA McInerney MJ 《Applied and environmental microbiology》2001,67(4):1728-1738
The metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" in cocultures with hydrogen-using microorganisms was studied. Cyclohexane carboxylate, cyclohex-1-ene carboxylate, pimelate, and glutarate (or their coenzyme A [CoA] derivatives) transiently accumulated during growth with benzoate. Identification was based on comparison of retention times and mass spectra of trimethylsilyl derivatives to the retention times and mass spectra of authentic chemical standards. (13)C nuclear magnetic resonance spectroscopy confirmed that cyclohexane carboxylate and cyclohex-1-ene carboxylate were produced from [ring-(13)C(6)]benzoate. None of the metabolites mentioned above was detected in non-substrate-amended or heat-killed controls. Cyclohexane carboxylic acid accumulated to a concentration of 260 microM, accounting for about 18% of the initial benzoate added. This compound was not detected in culture extracts of Rhodopseudomonas palustris grown phototrophically or Thauera aromatica grown under nitrate-reducing conditions. Cocultures of "S. aciditrophicus" and Methanospirillum hungatei readily metabolized cyclohexane carboxylate and cyclohex-1-ene carboxylate at a rate slightly faster than the rate of benzoate metabolism. In addition to cyclohexane carboxylate, pimelate, and glutarate, 2-hydroxycyclohexane carboxylate was detected in trace amounts in cocultures grown with cyclohex-1-ene carboxylate. Cyclohex-1-ene carboxylate, pimelate, and glutarate were detected in cocultures grown with cyclohexane carboxylate at levels similar to those found in benzoate-grown cocultures. Cell extracts of "S. aciditrophicus" grown in a coculture with Desulfovibrio sp. strain G11 with benzoate or in a pure culture with crotonate contained the following enzyme activities: an ATP-dependent benzoyl-CoA ligase, cyclohex-1-ene carboxyl-CoA hydratase, and 2-hydroxycyclohexane carboxyl-CoA dehydrogenase, as well as pimelyl-CoA dehydrogenase, glutaryl-CoA dehydrogenase, and the enzymes required for conversion of crotonyl-CoA to acetate. 2-Ketocyclohexane carboxyl-CoA hydrolase activity was detected in cell extracts of "S. aciditrophicus"-Desulfovibrio sp. strain G11 benzoate-grown cocultures but not in crotonate-grown pure cultures of "S. aciditrophicus". These results are consistent with the hypothesis that ring reduction during syntrophic benzoate metabolism involves a four- or six-electron reduction step and that once cyclohex-1-ene carboxyl-CoA is made, it is metabolized in a manner similar to that in R. palustris. 相似文献
8.
Kimberly L. James Johannes W. Kung Bryan R. Crable Housna Mouttaki Jessica R. Sieber Hong H. Nguyen Yanan Yang Yongming Xie Jonathan Erde Neil Q. Wofford Elizabeth A. Karr Joseph A. Loo Rachel R. Ogorzalek Loo Robert P. Gunsalus Michael J. McInerney 《Environmental microbiology》2019,21(5):1833-1846
Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13C-atoms from 1-[13C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner. 相似文献
9.
Bradley E. Jackson V. K. Bhupathiraju Ralph S. Tanner Carl R. Woese M. J. McInerney 《Archives of microbiology》1999,171(2):107-114
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and
certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported
growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ±
1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate
as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.
Received: 2 June 1998 / Accepted: 16 November 1998 相似文献
10.
In the denitrifying bacterium Thauera aromatica, the central intermediate of anaerobic aromatic metabolism, benzoyl-coenzyme A (CoA), is dearomatized by the ATP-dependent benzoyl-CoA reductase to cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA). The dienoyl-CoA is further metabolized by a series of beta-oxidation-like reactions of the so-called benzoyl-CoA degradation pathway resulting in ring cleavage. Recently, evidence was obtained that obligately anaerobic bacteria that use aromatic growth substrates do not contain an ATP-dependent benzoyl-CoA reductase. In these bacteria, the reactions involved in dearomatization and cleavage of the aromatic ring have not been shown, so far. In this work, a characteristic enzymatic step of the benzoyl-CoA pathway in obligate anaerobes was demonstrated and characterized. Dienoyl-CoA hydratase activities were determined in extracts of Geobacter metallireducens (iron reducing), Syntrophus aciditrophicus (fermenting), and Desulfococcus multivorans (sulfate reducing) cells grown with benzoate. The benzoate-induced genes putatively coding for the dienoyl-CoA hydratases in the benzoate degraders G. metallireducens and S. aciditrophicus were heterologously expressed and characterized. Both gene products specifically catalyzed the reversible hydration of dienoyl-CoA to 6-hydroxycyclohexenoyl-CoA (Km, 80 and 35 microM; Vmax, 350 and 550 micromol min(-1) mg(-1), respectively). Neither enzyme had significant activity with cyclohex-1-ene-1-carbonyl-CoA or crotonyl-CoA. The results suggest that benzoyl-CoA degradation proceeds via dienoyl-CoA and 6-hydroxycyclohexanoyl-CoA in strictly anaerobic bacteria. The steps involved in dienoyl-CoA metabolism appear identical in all nonphotosynthetic anaerobic bacteria, although totally different benzene ring-dearomatizing enzymes are present in facultative and obligate anaerobes. 相似文献
11.
Rapid Method for Detection and Quantitation of Hydroxylated Aromatic Intermediates Produced by Microorganisms 下载免费PDF全文
Tetrazotized o-dianisidine was used for quantitative measurements of the amount of 1-naphthol formed from naphthalene by fungi in liquid cultures. The reagent was also used to detect the accumulation of phenols and cis-dihydrodiols in fungal and bacterial colonies on solid media. 相似文献
12.
Leaf Carbon Metabolism and Metabolite Levels during a Period of Sinusoidal Light 总被引:1,自引:3,他引:1 下载免费PDF全文
Photosynthesis rate, internal CO2 concentration, starch, sucrose, and metabolite levels were measured in leaves of sugar beet (Beta vulgaris L.) during a 14-h period of sinusoidal light, which simulated a natural light period. Photosynthesis rate closely followed increasing and decreasing light level. Chloroplast metabolite levels changed in a manner indicating differential activation of enzymes at different light levels. Starch levels declined during the first and last 2 hours of the photoperiod, but increased when photosynthesis rate was greater than 50% of maximal. Sucrose and sucrose phosphate synthase levels were constant during the photoperiod, which is consistent with a relatively steady rate of sucrose synthesis during the day as observed previously (BR Fondy et al. [1989] Plant Physiol 89: 396-402). When starch was being degraded, glucose 1-phosphate level was high and there was a large amount of glucose 6-phosphate above that in equilibrium with fructose 6-phosphate, while fructose 6-phosphate and triose-phosphate levels were very low. Likewise, the regulatory metabolite, fructose, 2,6-bisphosphate was high, indicating that little carbon could move to sucrose from starch by the triose-phosphate pathway. These data cast doubt upon the feasibility of significant carbon flow through the triose-phosphate pathway during starch degradation and support the need for an additional pathway for mobilizing starch carbon to sucrose. 相似文献
13.
Formation of Aniline as a Transient Metabolite During the Metabolism of Tetryl by a Sulfate-Reducing Bacterial Consortium 总被引:4,自引:0,他引:4
Boopathy R 《Current microbiology》2000,40(3):190-193
A laboratory study was conducted to determine whether tetryl (2,4,6-trinitrophenylmethylnitramine) can be degraded by an
anaerobic process. The results indicated that the metabolic conversion of tetryl to aniline is possible by a sulfate-reducing
bacterial (SRB) consortium. This SRB consortium metabolized tetryl by co-metabolism with pyruvate as a growth substrate. For
every mole of tetryl metabolized, 1 mole of aniline was produced, and the aniline was further metabolized. This metabolic
conversion of tetryl is likely to be of value in the anaerobic treatment of tetryl-contaminated soil and ground water, such
as found at many military ammunition sites.
Received: 18 August 1999 / Accepted: 15 September 1999 相似文献
14.
Johannes W. Kung Jana Seifert Martin von Bergen Matthias Boll 《Journal of bacteriology》2013,195(14):3193-3200
The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation. 相似文献
15.
The pathway of fermentative benzoate degradation by the syntrophically fermenting bacterium Syntrophus gentianae was studied by measurement of enzyme activities in cell-free extracts. Benzoate was activated by a benzoate-CoA ligase reaction,
forming AMP and pyrophosphate, which was subsequently cleaved by a membrane-bound proton-translocating pyrophosphatase. Glutaconyl-CoA
(formed from hypothetical pimelyl-CoA and glutaryl-CoA intermediates) was decarboxylated to crotonyl-CoA by a sodium-ion-dependent
membrane-bound glutaconyl-CoA decarboxylase, a biotin enzyme that could be inhibited by avidin. The overall energy budget
of this fermentation could be balanced only if the dearomatizing reduction of benzoyl-CoA is assumed to produce cyclohexene
carboxyl-CoA rather than cyclohexadiene carboxyl-CoA, although experimental evidence of this reaction is still insufficient.
With this assumption, benzoate degradation by S. gentianae can be balanced to yield one-third to two-thirds of an ATP unit per benzoate degraded, in accordance with earlier measurements
of whole-cell energetics.
Received: 5 August 1998 / Accepted: 18 February 1999 相似文献
16.
Metabolism of Pyrene by the Basidiomycete Crinipellis stipitaria and Identification of Pyrenequinones and Their Hydroxylated Precursors in Strain JK375 下载免费PDF全文
The metabolism of pyrene, a polycyclic aromatic hydrocarbon, by submerged cultures of the basidiomycete Crinipellis stipitaria was studied. After incubation for 68 h at 25°C in a 20-liter fermentor with complex medium and 20 mg of pyrene per liter, five metabolites were detected. The compounds were isolated by preparative high-performance liquid chromatography on RP18 and DIOL gels. By UV, infrared, and 1H nuclear magnetic resonance spectroscopy and mass spectrometry, 1-hydroxypyrene, 1,6-dihydroxypyrene, 1,8-dihydroxypyrene, 1,6-pyrenequinone, and 1,8-pyrenequinone were identified. 1,6- and 1,8-dihydroxypyrene were obtained from fungal cultures for the first time. The formation of these metabolites was confirmed by investigations with [4,5,9,10-14C]pyrene. 相似文献
17.
Jack Bartley James C. Bartholomew Martha R. Stampfer 《Journal of cellular biochemistry》1982,18(2):135-148
We demonstrate in cell culture that mammary epithelial cells from normal human breast specimens metabolize benzo(a)pyrene (BaP) and form adducts with the bases of their DNA more readily and at lower concentrations of BaP than do fibroblasts from the same specimens. BaP metabolism and adduct formation was determined in the same incubations with epithelial cells grown out in early passage from each of three specimens and with fibroblasts from one of these specimens. The metabolite pattern of the epithelial cells was indicative of preferential formation of 7, 8-dihydrodiol-9, 10-dihydroepoxybenzo(a)pyrene the ultimate carcinogen. In contrast, fibroblasts formed mainly mono- and dihydroxide derivatives of BaP. The metabolite pattern from epithelial cells was compatible with the ease in which adducts between DNA and the diolepoxide of benzo(a)pyrene were formed. These results provide evidence that chemical carcinogens should be considered as possible factors in the induction of breast cancer in women. 相似文献
18.
Fungal Metabolism of Toluene: Monitoring of Fluorinated Analogs by 19F Nuclear Magnetic Resonance Spectroscopy 下载免费PDF全文
Francesc X. Prenafeta-Boldú Dion M. A. M. Luykx Jacques Vervoort Jan A. M. de Bont 《Applied microbiology》2001,67(3):1030-1034
We used isomeric fluorotoluenes as model substrates to study the catabolism of toluene by five deuteromycete fungi and one ascomycete fungus capable of growth on toluene as the sole carbon and energy source, as well as by two fungi (Cunninghamella echinulata and Aspergillus niger) that cometabolize toluene. Whole cells were incubated with 2-, 3-, and 4-fluorotoluene, and metabolites were characterized by 19F nuclear magnetic resonance. Oxidation of fluorotoluene by C. echinulata was initiated either at the aromatic ring, resulting in fluorinated o-cresol, or at the methyl group to form fluorobenzoate. The initial conversion of the fluorotoluenes by toluene-grown fungi occurred only at the side chain and resulted in fluorinated benzoates. The latter compounds were the substrate for the ring hydroxylation and, depending on the fluorine position, were further metabolized up to catecholic intermediates. From the 19F nuclear magnetic resonance metabolic profiles, we propose that diverse fungi that grow on toluene assimilate toluene by an initial oxidation of the methyl group. 相似文献
19.
20.
Claudia Wiese Marianne Cogoli-Greuter Regin Weinreich Kaspar H. Winterhalter 《Journal of neurochemistry》1992,58(1):219-226
Fluorinated analogues of 3,4-dihydroxyphenylalanine (DOPA) were tested for intracellular metabolic conversion in aggregating cell cultures prepared from fetal rat brain. 5-Fluoro-D/L-DOPA was methylated almost exclusively to 3-O-methyl-5-fluoro-D/L-DOPA. Metabolism of 6-fluoro-D/L-DOPA resulted in 6-fluorodopamine, 6-fluoro-3,4-dihydroxyphenylacetic acid, and 3-O-methyl-6-fluoro-D/L-DOPA, but with a qualitatively and quantitatively different metabolite pattern compared with that of L-DOPA and D/L-DOPA, respectively. Homovanillic acid and fluorohomovanillic acid have not been found intracellularly in the cultures. On the basis of these data, the model development of the cerebral metabolism of tracers used in positron emission tomography can be improved. 相似文献