首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Human beta-defensins (hBDs) are antimicrobial peptides that play important roles in host defense against infection, inflammation and immunity. Previous studies showed that micro-organisms and proinflammatory mediators regulate the expression of these peptides in airway epithelial cells. The aim of the present study was to investigate the modulation of expression of hBDs in cultured primary bronchial epithelial cells (PBEC) by rhinovirus-16 (RV16), a respiratory virus responsible for the common cold and associated with asthma exacerbations. RV16 was found to induce expression of hBD-2 and -3 mRNA in PBEC, but did not affect hBD-1 mRNA. Viral replication appeared essential for rhinovirus-induced beta-defensin mRNA expression, since UV-inactivated rhinovirus did not increase expression of hBD-2 and hBD-3 mRNA. Exposure to synthetic double-stranded RNA (dsRNA) molecule polyinosinic:polycytidylic acid had a similar effect as RV16 on mRNA expression of these peptides in PBEC. In line with this, PBEC were found to express TLR3, a Toll-like receptor involved in recognition of dsRNA. This study shows that rhinovirus infection of PBEC leads to increased hBD-2 and hBD-3 mRNA expression, which may play a role in both the uncomplicated common cold and in virus-associated exacerbations of asthma.  相似文献   

4.
Toll-like receptors (TLRs) are key elements in the innate immune response, functioning as pattern-recognition receptors for the detection and response to endotoxins and other microbial ligands. Inflammatory cytokines play an important role in the activation of the hypothalamic-pituitary-adrenal HPA axis during inflammation and sepsis. The newly recognized major role of TLR2 and TLR4 and the adrenal stress response during critical illnesses such as inflammation and sepsis demand comprehensive analysis of their interactions. Therefore, we analyzed TLR2 and TLR4 expression in human adrenal glands. Western blot analysis demonstrated the expression of TLR2 and TLR4 in the human adrenocortical cell line NCI-H295. Immunohistochemical analysis of normal human adrenal glands revealed TLR2 and TLR4 expression in the adrenal cortex, but not in the adrenal medulla. Considering the crucial role of the HPA axis and the innate immune response during acute sepsis or septic shock, elucidating the functional interaction of these systems should be of great clinical relevance.  相似文献   

5.
Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.  相似文献   

6.
7.
8.
Intestinal gene transfer offers promise as a therapeutic option for treatment of both intestinal and non-intestinal diseases. Recombinant adeno-associated virus serotype 2, rAAV2, based vectors have been utilized to transduce lung epithelial cells in culture and in human subjects. rAAV2 transduction of intestinal epithelial cells, however, is limited both in culture and in vivo. Proteasome-inhibiting agents have recently been shown to enhance rAAV2-mediated transgene expression in airway epithelial cells. We hypothesized that similar inhibition of proteasome-related cellular processes can function to induce rAAV2 transduction of intestinal epithelial cells. Our results demonstrate that combined treatment with proteasome-modulating agents MG101 (N-acetyl-L-leucyl-L-leucyl-L-norleucine) and Doxorubicin synergistically induces rAAV2-mediated luciferase transgene expression by >400-fold in undifferentiated Caco-2 cells. In differentiated Caco-2 monolayers, treatment with MG101 and Doxorubicin induces transduction preferentially from the basolateral cell surface. In addition to Caco-2 cells, treatment with MG101 and Doxorubicin also results in enhanced rAAV2 transduction of HT-29, T84, and HCT-116 human intestinal epithelial cell lines. We conclude that MG101 and Doxorubicin mediate generic effects on intestinal epithelial cells that result in enhanced rAAV2 transduction. Use of proteasome-modulating agents to enhance viral transduction may facilitate the development of more efficient intestinal gene transfer protocols.  相似文献   

9.
As pattern recognition receptors capable of eliciting responses to a diverse array of microbial products, Toll-like receptors (TLRs) participate in the activation of host defense mechanisms that protect against infectious pathogens. Given that epithelial cells lie at the interface between the host and its environment, we designed experiments to determine whether human airway epithelial cells express TLRs and respond to TLR agonists. Immunohistochemical labeling of TLR2 in normal human airways revealed TLR2 expression throughout the epithelium, with an apparently higher level of expression on noncolumnar basal epithelial cells. Two-color immunofluorescent labeling of TLR2 and cytokeratins 8 and 15 revealed that TLR2 is coexpressed with the epithelial cell markers. In addition, airway epithelial cells grown at air-liquid interface responded to bacterial lipopeptide in a TLR2-dependent manner with induction of mRNA and protein of the antimicrobial peptide human beta defensin-2. Stimulation of epithelial cell cultures with lipopeptide resulted in a small and variable reduction of bacteria on the apical surface. Together, these data suggest that TLRs monitor epithelial surfaces to enhance host defense by inducing the production of an antimicrobial peptide.  相似文献   

10.
Previously, we reported that various oral bacteria regulate interleukin (IL)-8 production differently in gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptor(s) that mediate bacteria-induced IL-8 expression. Among ligands that mimic bacterial components, only a Toll-like receptor (TLR) 9 ligand enhanced IL-8 expression as determined by ELISA. Both normal and immortalized human gingival epithelial (HOK-16B) cells expressed TLR9 intracellularly and showed enhanced IL-8 expression in response to CpG-oligonucleotide. The ability of eight strains of four oral bacterial species to induce IL-8 expression in HOK-16B cells, and their invasion capacity were examined in the absence or presence of 2% human serum. The ability of purified bacterial DNA (bDNA) to induce IL-8 was also examined. Six out of eight strains increased IL-8 production in the absence of serum. Usage of an endosomal acidification blocker or a TLR9 antagonist inhibited the IL-8 induction by two potent strains. In the presence of serum, many strains lost the ability to induce IL-8 and presented substantially reduced invasion capacity. The IL-8-inducing ability of bacteria in the absence or presence of serum showed a strong positive correlation with their invasion index. The IL-8-inducing ability of bacteria in the absence of human serum was also correlated with the immunostimulatory activity of its bDNA. The observed immunostimulatory activity of the bDNA could not be linked to its CpG motif content. In conclusion, oral bacteria induce IL-8 in gingival epithelial cells through TLR9 and the IL-8-inducing ability depends on the invasive capacity and immunostimulating DNA.  相似文献   

11.
Choi HJ  Kim MK  Ko JH  Lee HJ  Jeong HJ  Wee WR  Seong SY  Akira S 《Cytokine》2011,56(2):265-271
Keratocytes are the first component to contact ocular pathogens when the epithelial barrier breaks down and the emerging evidences indicated keratocytes appeared to be one of the corneal cellular immune components. Little is known about the role of Toll-like receptors (TLRs) in keratocytes, although it has been well documented that keratocytes constitutively express various TLRs including TLR2 and TLR4. In this in vitro study, the authors focused on the role of keratocytes in corneal innate immune system and cross-talk of keratocytes with resident antigen presenting cells (APCs), especially through TLR2 and TLR4. Primary cultivated keratocytes (corneal fibroblasts) from C57BL/6 mice per se actively secreted pro-inflammatory cytokines, especially interleukin (IL)-6, with a dose-dependent manner in response to Pam3CSK4 or lipopolysaccharide (LPS) challenge. With co-culture of corneal fibroblasts with APCs per se, secretion of IL-6 and tumor necrosis factor (TNF)-α was markedly increased and it was counterbalanced by concurrent increase in IL-10 and tumor growth factor-β1. After Pam3CSK4 or LPS stimulation, this cytokine balance was completely broken down by overwhelming amplification of IL-6 and TNF-α secretion, especially in co-culture of corneal fibroblasts with macrophages, rather than with dendritic cells. Using corneal fibroblasts from TLR2 or TLR4 knockout mice, we could find the reversal of Pam3CSK4 or LPS-responsive dose-dependent increment in IL-6 and TNF-α. These results implied that corneal fibroblasts and their TLRs could be key components for the ocular homeostasis and pathogen-associated ocular innate immunity.  相似文献   

12.
13.
The ability of the host to recognize pulmonary invasion by pathogenic organisms and establish an appropriate host response to infection requires innate immune defense mechanisms. Early bacterial clearance in the lung is mediated by alveolar macrophages (AM) and polymorphonuclear neutrophils. Additionally alveolar epithelial cells type II (AEC-II) may act as immunoregulatory cells. The toll-like receptors (TLR) are part of this innate immune defense, recognizing conserved patterns on microorganisms. Toll-like receptor 2 (TLR2) is crucial in detecting components of gram-positive bacteria and mycobacteria. Signals initiated by the interaction of TLR2 with bacterial components direct the subsequent inflammatory response. The detection of TLR2 mRNA in human lung tissue prompted us to localize the expression of mRNA and protein at the cellular level using a novel method for tissue fixation. We utilized HOPE-fixed lung specimen sections for targeting mRNA by in situ hybridization and protein by immunohistochemistry using the monoclonal antibody TL2.1. In normal lung areas the expression of TLR2 mRNA and protein was found to be located in cells resembling AEC-II and AM. Expression of mRNA was verified by RT-PCR and DNA sequencing. These results indicate a potential mechanism of increased immunosurveillance at the alveolar level controlling the localized infection.  相似文献   

14.
Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-alpha, or IFN-gamma induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-gamma act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-kappaB dependent. LPS and IFN-gamma also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-alpha, or IFN-gamma. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-gamma, in inducing shock associated with Gram-negative sepsis.  相似文献   

15.
Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K.  相似文献   

16.
The Toll-like receptors (TLRs) allow mammalian intestinal epithelium to detect various microbes and activate innate immunity after infection. TLR2 and TLR4 have been identified in intestinal epithelial cells (IECs) as fundamental components of the innate immune response to bacterial pathogens, but the exact mechanism involved in control of TLR expression remains unclear. Polyamines are implicated in a wide variety of biological functions, and regulation of cellular polyamines is a central convergence point for the multiple signaling pathways driving different epithelial cell functions. The current study determined whether polyamines regulate TLR expression, thereby modulating intestinal epithelial barrier function. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine decreased levels of TLR2 mRNA and protein, whereas increased polyamines by ectopic overexpression of the ODC gene enhanced TLR2 expression. Neither intervention changed basal levels of TLR4. Exposure of normal IECs to low-dose (5 microg/ml) LPS increased ODC enzyme activity and stimulated expression of TLR2 but not TLR4, while polyamine depletion prevented this LPS-induced TLR2 expression. Decreased TLR2 in polyamine-deficient cells was associated with epithelial barrier dysfunction. In contrast, increased TLR2 by the low dose of LPS enhanced epithelial barrier function, which was abolished by inhibition of TLR2 expression with specific, small interfering RNA. These results indicate that polyamines are necessary for TLR2 expression and that polyamine-induced TLR2 activation plays an important role in regulating epithelial barrier function.  相似文献   

17.
A cytoprotective role for protease-activated receptor-2 (PAR2) has been suggested in a number of systems including the airway, and to this end, we have studied the role that PARs play in the regulation of airway ion transport, using cultures of normal human bronchial epithelial cells. PAR2 activators, added to the basolateral membrane, caused a transient, Ca2+-dependent increase in short-circuit current (I(sc)), followed by a sustained inhibition of amiloride-sensitive I(sc). These phases corresponded with a transient increase in intracellular Ca2+ concentration and then a transient increase, followed by decrease, in basolateral K+ permeability. After PAR2 activation and the addition of amiloride, the forskolin-stimulated increase in I(sc) was also attenuated. By contrast, PAR2 activators added to the apical surface of the epithelia or PAR1 activators added to both the apical and basolateral surfaces were without effect. PAR2 may, therefore, play a role in the airway, regulating Na+ absorption and anion secretion, processes that are central to the control of airway surface liquid volume and composition.  相似文献   

18.
Interactions between proinflammatory and cell maturation signals, and the pathways that regulate leukocyte migration, are of fundamental importance in controlling trafficking and recruitment of leukocytes during the processes of innate and adaptive immunity. We have investigated the molecular mechanisms by which selective Toll-like receptor (TLR)2 and TLR4 agonists regulate expression of CCR1 and CCR2 on primary human monocytes and THP-1 cells, a human monocytic cell line. We found that activation of either TLR2 (by Pam(3)CysSerLys(4)) or TLR4 (by purified LPS) resulted in down-modulation of both CCR1 and CCR2. Further investigation of TLR-induced down-modulation of CCR1 revealed differences in the signaling pathways activated, and chemokines generated, via the two TLR agonists. TLR2 activation caused slower induction of the NF-kappa B and mitogen-activated protein kinase signaling pathways and yet a much enhanced and prolonged macrophage-inflammatory protein 1 alpha (CC chemokine ligand 3) protein production, when compared with TLR4 stimulation. Enhanced macrophage-inflammatory protein 1 alpha production may contribute to the prolonged down-regulation of CCR1 cell surface expression observed in response to the TLR2 agonist, as preventing chemokine generation with the protein synthesis inhibitor cycloheximide, or CCR1 signaling with the receptor antagonist UCB35625, abolished TLR2- and TLR4-induced CCR1 down-modulation. This result suggests an autocrine pathway, whereby TLR activation can induce chemokine production, which then leads to homologous down-regulation of the cognate receptors. This work provides further insights into the mechanisms that regulate leukocyte recruitment and trafficking during TLR-induced inflammatory responses.  相似文献   

19.
Although CpG containing DNA is an important regulator of innate immune responses via toll-like receptor 9 (TLR9), excessive activation of this receptor is detrimental to the host. Here, we show that cytosolic phospholipase A2 (cPLA2) activation is important for TLR9-mediated inducible nitric oxide synthase (iNOS) expression. Activation of TLR9 signaling by CpG induces iNOS expression and NO production. Inhibition of TLR9 blocked the iNOS expression and NO production. The CpG also stimulates cPLA2-hydrolyzed arachidonic acid (AA) release. Inhibition of cPLA2 activity by inhibitor attenuated the iNOS expression by CpG response. Additionally, knockdown of cPLA2 protein by miRNA also suppressed the CpG-induced iNOS expression. Furthermore, the CpG rapidly phosphorylates three MAPKs and Akt. A potent inhibitor for p38 MAPK or Akt blocked the CpG-induced AA release and iNOS expression. These results suggest that TLR9 activation stimulates cPLA2 activity via p38 or Akt pathways and mediates iNOS expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号