首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In earlier studies, we and others have established that activation of EGFR can promote survival in association with upregulation of Bcl-x(L). However, the mechanism responsible for upregulation of Bcl-x(L) is unknown. For the current studies we have chosen pro-apoptotic, c-Myc-overexpressing murine mammary epithelial cells (MMECs) derived from MMTV-c-Myc transgenic mouse tumors. We now demonstrate that EGFR activation promotes survival through Akt and Erk1/2. Blockade of EGFR kinase activity and the PI3-K/Akt and MEK/Erk pathways with pharmacological inhibitors resulted in a significant induction of cellular apoptosis, paralleled by a downregulation of both Akt and Erk1/2 proteins. Consistent with a survival-promoting role of Akt, we observed that constitutively activated Akt (Myr-Akt) inhibited apoptosis of pro-apoptotic, c-Myc-overexpressing cells following the inhibition of EGFR tyrosine kinase activity. In addressing possible downstream effectors of EGFR through activated Akt, we detected significant upregulation of Bcl-x(L) protein, suggesting this pro-survival protein is a target of Akt in MMECs. By using pharmacological inhibitors of PI3-K/Akt and MEK/Erk together with dominant-negative Akt and Erk1 we observed the decrease in Bcl-x(L) protein. Our findings may be of importance for understanding the emerging role of Bcl-x(L) as a potential marker of poor prognosis in breast cancer.  相似文献   

2.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   

3.
Studies were performed to investigate regulatory pathways of loop diuretic-sensitive Na+/K+/Cl- cotransport in cultured rat glomerular mesangial cells. Angiotensin II, alpha-thrombin, and epidermal growth factor (EGF) all stimulated Na+/K+/Cl- cotransport in a concentration-dependent manner. Pertussis toxin pretreatment reduced the effects of angiotensin II and alpha-thrombin but not that of EGF. Addition of the protein kinase C inhibitor staurosporine or down-regulation of protein kinase C by prolonged incubation with phorbol 12-myristate 13-acetate partially reduced the effects of angiotensin II and alpha-thrombin and completely blunted the phorbol 12-myristate 13-acetate-induced stimulation of Na+/K+/Cl- cotransport but did not affect EGF-induced stimulation. Exposure of cells to a calcium ionophore, A23187, resulted in a concentration-dependent stimulation of Na+/K+/Cl- cotransport, which was not significantly inhibited by down-regulation of protein kinase C but was completely inhibited by the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). Stimulation of the cotransport by angiotensin II or alpha-thrombin was also partially inhibited by W-7. Inhibitory effects of protein kinase C down-regulation and W-7 were additive and, when combined, produced a complete inhibition of angiotensin II-induced stimulation of Na+/K+/Cl- cotransport. In saponin-permeabilized mesangial cells, phosphorylation of a synthetic decapeptide substrate for Ca2+/calmodulin-dependent kinase II, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH3, was demonstrated. Maximal activation of the decapeptide substrate phosphorylation required the presence of Ca2+ and calmodulin and was dependent on Ca2+ concentration. These findings indicate that stimulation of Na+/K+/Cl- cotransport by angiotensin II and alpha-thrombin is mediated by protein kinase C and Ca2+/calmodulin-dependent kinases whereas the action of EGF is mediated by other pathways.  相似文献   

4.
Histamine induces chemotaxis of mast cells through the histamine H4 receptor. This involves the activation of small GTPases, Rac1 and Rac2, downstream of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Activation of the H4 receptor also results in phospholipase C (PLC)-mediated calcium mobilization; however, it is unclear whether the PLC‑calcium pathway interacts with the PI3K-Rac pathway. Here, we demonstrated that calcium mobilization regulates the PI3K-dependent activation of Rac GTPases through calmodulin. A PLC inhibitor (U73122) and an intracellular calcium chelator (BAPTA-AM) suppressed the histamine-induced activation of Rac, whereas the calcium ionophore ionomycin increased the active Rac GTPases, suggesting that intracellular calcium regulates the activation of Rac. The calmodulin antagonist (W-7) inhibited the histamine-induced activation of Rac and migration of mast cells, indicating that calmodulin mediates the effect of calcium. Inhibition of calcium/calmodulin signaling suppressed histamine-induced phosphorylation of Akt. The Akt inhibitor MK-2206 attenuated histamine-induced migration of mast cells. However, it did not suppress the activation of Rac GTPases. These results suggest that Rac GTPases and Akt play independent roles in the histamine-induced chemotaxis of mast cells. Our findings enable further elucidation of the molecular mechanism of histamine-induced chemotaxis of mast cells and help identify therapeutic targets for allergic and inflammatory conditions involving mast cell accumulation.  相似文献   

5.
6.

Background  

HC11 mouse mammary epithelial cells differentiate in response to lactogenic hormone resulting in expression of milk proteins including β-casein. Previous studies have shown that epidermal growth factor (EGF) blocks differentiation not only through activation of the Ras/Mek/Erk pathway but also implicated phosphatidylinositol-3-kinase (PI-3-kinase) signaling. The current study analyzes the mechanism of the PI-3-kinase pathway in an EGF-induced block of HC11 lactogenic differentiation.  相似文献   

7.
N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) is known to be a potent calmodulin antagonist and inhibitor of calmodulin-dependent protein kinases. W-7 and 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine (H-7) are inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. In C6 glioma cells, W-7 and not H-7 inhibited dose-dependently acid sphingomyelinase, a result indicating the modulation of this lysosomal enzyme by a calmodulin-dependent system. Other lysosomal enzymes, such as beta-glucosidase, alpha-galactosidase, and arylsulfatase A, were unaffected by W-7 and H-7, a finding indicating a selective effect of W-7 on sphingomyelinase.  相似文献   

8.
Both prolactin (PRL) and TGF-beta regulate cell survival in mammary epithelial cells, but their mechanisms of interactions are not known. In primary mammary epithelial cells and the HC11 mouse mammary epithelial cell line, PRL prevented TGF-beta-induced apoptosis, as measured by terminal deoxynucleotidyltransferase dUTP nick-end labeling staining and caspase-3 activation. This effect depended on phosphatidyl inositol triphosphate kinase (PI3K). PI3K activates a downstream serine/threonine kinase, Akt; therefore, we investigated the role of Akt in the interaction between PRL and TGF-beta signaling. Akt activity was inhibited by TGF-beta over a 20- to 60-min time course. In TGF-beta-treated cells, PRL disinhibited Akt in a PI3K-dependent manner. Expression of dominant negative Akt blocked the protective effect of PRL in TGF-beta-induced apoptosis. Transgenic mice overexpressing a dominant-negative TGF-beta type II receptor (DNIIR) in the mammary epithelium undergo hyperplastic alveolar development, and this effect was PRL dependent. Involution in response to teat sealing was slowed by overexpression of DNIIR; furthermore, Akt and forkhead phosphorylation increased in the sealed mammary glands of DNIIR mice. Thus, Akt appears to be an essential component of the interaction between PRL and TGF-beta signaling in mammary epithelial cells both in vitro and in vivo.  相似文献   

9.
Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Deltap85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.  相似文献   

10.
Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl. Src is associated with c-Cbl, and we have previously demonstrated that the Src-like kinase Fyn can phosphorylate c-Cbl at a preferred binding site for the p85 subunit of phosphatidylinositol 3'-kinase. PP1 treatment blocks EGF-induced activation of the anti-apoptotic protein kinase Akt suggesting that Src may regulate activation of Akt, perhaps by a Src --> c-Cbl --> phosphatidylinositol 3'-kinase --> Akt pathway.  相似文献   

11.
Transgenic mice expressing the polyomavirus (PyV) middle T antigen (MT) develop multifocal mammary tumors which frequently metastasize to the lung. The potent transforming activity of PyV MT is correlated with its capacity to activate and associate with a number of signaling molecules, including the Src family tyrosine kinases, the 85-kDa Src homology 2 subunit of the phosphatidylinositol 3′ (PI-3′) kinase, and the Shc adapter protein. To uncover the role of these signaling proteins in MT-mediated mammary tumorigenesis, we have generated transgenic mice that express mutant PyV MT antigens decoupled from either the Shc or the PI-3′ kinase signaling pathway. In contrast to the rapid induction of metastatic mammary tumors observed in the strains expressing wild-type PyV MT, mammary epithelial cell-specific expression of either mutant PyV MT resulted in the induction of extensive mammary epithelial hyperplasias. The mammary epithelial hyperplasias expressing the mutant PyV MT defective in recruiting the PI-3′ kinase were highly apoptotic, suggesting that recruitment of PI-3′ kinase by MT affects cell survival. Whereas the initial phenotypes observed in both strains were global mammary epithelial hyperplasias, focal mammary tumors eventually arose in all female transgenic mice. Genetic and biochemical analyses of tumorigenesis in the transgenic strains expressing the PyV MT mutant lacking the Shc binding site revealed that a proportion of the metastatic tumors arising in these mice displayed evidence of reversion of the mutant Shc binding site. In contrast, no evidence of reversion of the PI-3′ kinase binding site was noted in tumors derived from the strains expressing the PI-3′ kinase binding site MT mutant. Tumor progression in both mutant strains was further correlated with upregulation of the epidermal growth factor receptor family members which are known to couple to the PI-3′ kinase and Shc signaling pathways. Taken together, these observations suggest that PyV MT-mediated tumorigenesis requires activation of both Shc and PI-3′ kinase, which appear to be required for stimulation of cell proliferation and survival signaling pathways, respectively.  相似文献   

12.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction.  相似文献   

13.
We have previously demonstrated that activation of protein kinase C (PKC) by phorbol esters induces selectively IgA synthesis by mouse B cells. In this study, we investigated the effects of a number of protein kinase inhibitors on IgA secretion induced by a recombinant murine IL-5 in LPS-stimulated mouse B cells. The results show that PKC inhibitors, such as sphingosine (SPH), staurosporine (STP) and H-7, blocked IL-5-induced IgA synthesis; the protein kinase A inhibitor HA-1004 and the inhibitor of calcium/calmodulin dependent protein kinase W-7 had no effect on IgA secretion induced by IL-5. The proliferation of the IL-5 sensitive B13 cell line in response to IL-5 was also inhibited by addition of SPH or STP or H-7. The data suggest an involvement of the PKC pathway in IL-5-induced B cell differentiation into IgA secreting cells.  相似文献   

14.
AIM: This study was undertaken to investigate the role of calmodulin in phospholipid biosynthesis in Candida albicans using W-7, a calmodulin antagonist. METHODS: Cells were grown as shake cultures in the absence and presence of W-7 at different concentrations. Changes in cell mass, phospholipid content and incorporation of labelled precursor into phospholipid and activities of respective enzymes have been studied. RESULTS: Decreased incorporation of labelled acetate into total lipids and phospholipids was observed in the presence of 40 microm of W-7 which was not as a consequence of altered growth of Candida in the presence of calmodulin antagonist. Further, a significant decrease in the levels of calmodulin and CaM dependent protein kinase activity was observed in cells grown with different concentrations of W-7. This was accompanied by decreased/increased activity of phosphatidic acid phosphatase and phospholipase A, respectively in W-7 grown cells as compared to controls. CONCLUSIONS: These findings suggest definite involvement of calmodulin in the regulation of phospholipid metabolism in Candida albicans.  相似文献   

15.
N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), commonly regared as a calmodulin antagonist, inhibted phospholipid-sensitive Ca2+-dependent protein kinase and to a lesser extent cyclic GMP- and cyclic AMP-dependent protein kinases. Kinetic studies of the inhibition of the homogenous spleen phospholipid-sensitive Ca2+-dependent protein kinase indicated that W-7 inhibited the enzyme activity competitively with respect to phospholipid (Ki = 60 μM). N-(6-Aminohexyl)-1-naphthalenesulfonamide (W-5) was found to be musch less potent than W-7. The findings indicate that W-6 was able to inhibit a variety of protein kinases, in addition to those requiring calmodulin previously reported.  相似文献   

16.
17.
Degranulation in RBL-2H3 cells: regulation by calmodulin pathway   总被引:1,自引:0,他引:1  
Involvement of the calmodulin pathway in Ca2+-induced degranulation was evaluated in RBL-2H3 mast cells. Pretreatment of RBL-2H3 cells with a calmodulin antagonist, W-13, blocked ionomycin-dependent release of beta-hexosaminidase into the supernatant, although W-13 treatment alone slightly but significantly increased the release. Ca2+/calmodulin activates various protein kinases and phosphatases including myosin-light chain kinase (MLCK), calmodulin-dependent protein kinases (CaMKs), and calcineurin. When RBL-2H3 cells were pretreated with a MLCK inhibitor, ML-7, or a CaMKs inhibitor, KN-93, the ionomycin-dependent release of beta-hexosaminidase into the supernatant was inhibited. In addition, pretreatment with calcineurin inhibitors, cyclosporin A and FR901725, resulted in blockage of the ionomycin-dependent release of beta-hexosaminidase into the supernatant. Our results indicate that Ca2+/calmodulin, activated calmodulin, is indispensable for Ca2+-induced degranulation, and that within the calmodulin pathways, at least MLCK, CaMKs and calcineurin positively regulate the release of granules initiated by increasing cytosolic Ca2+ concentrations in RBL-2H3 cells.  相似文献   

18.
We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in 3H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.  相似文献   

19.
The protein kinase B/Akt signalling pathway in human malignancy   总被引:34,自引:0,他引:34  
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.  相似文献   

20.
The roles of calmodulin and protein kinase C in the activation of the human neutrophil respiratory burst were characterized pharmacologically. The protein kinase C inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and N-(2-aminoethyl)-5-isoquinolinesulfonamide (H-9) did not inhibit superoxide anion generation by neutrophils stimulated for 30 minutes with N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) or 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). However, H-7 did depress superoxide production during the first 5 minutes following stimulation. In contrast, the specific calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and the dual calmodulin antagonist/protein kinase C inhibitor trifluoperazine (TFP) were potent inhibitors of the response throughout the 30 minute incubation. Stimulation of neutrophils with submaximal doses of FMLP or PMA failed to promote inhibition of the respiratory burst by H-7 or H-9, but did stimulate a respiratory burst response which was not inhibited by TFP or W-7. These results suggest that while protein kinase C may play a role in the initiation of the respiratory burst response, propagation of the response is dependent on calmodulin-dependent processes. The inability of TFP and W-7 to inhibit superoxide anion generation in response to submaximal stimulatory doses of FMLP or PMA suggests that calmodulin-independent processes may also be involved in activation of the respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号