首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine/glyoxylate aminotransferase 1 (AGT) is peroxisomal in most normal humans, but in some patients with the hereditary disease primary hyperoxaluria type 1 (PH1), AGT is mislocalized to the mitochondria. In an attempt to identify the sequences in AGT that mediate its targeting to peroxisomes, and to determine the mechanism by which AGT is mistargeted in PH1, we have studied the intracellular compartmentalization of various normal and mutant AGT polypeptides in normal human fibroblasts and cell lines with selective deficiencies of peroxisomal protein import, using immunofluorescence microscopy after intranuclear microinjection of AGT expression plasmids. The results show that AGT is imported into peroxisomes via the peroxisomal targeting sequence type 1 (PTS1) translocation pathway. Although the COOH-terminal KKL of human AGT was shown to be necessary for its peroxisomal import, this tripeptide was unable to direct the peroxisomal import of the bona fide peroxisomal protein firefly luciferase or the reporter protein bacterial chloramphenicol acetyltransferase. An ill-defined region immediately upstream of the COOH-terminal KKL was also found to be necessary for the peroxisomal import of AGT, but again this region was found to be insufficient to direct the peroxisomal import of chloramphenicol acetyltransferase. Substitution of the COOH-terminal KKL of human AGT by the COOH-terminal tripeptides found in the AGTs of other mammalian species (SQL, NKL), the prototypical PTS1 (SKL), or the glycosomal PTS1 (SSL) also allowed peroxisomal targeting, showing that the allowable PTS1 motif in AGT is considerably more degenerate than, or at least very different from, that acceptable in luciferase. AGT possessing the two amino acid substitutions responsible for its mistargeting in PH1 (i.e., Pro11-- >Leu and Gly170-->Arg) was targeted mainly to the mitochondria. However, AGTs possessing each amino acid substitution on its own were targeted normally to the peroxisomes. This suggests that Gly170-->Arg- mediated increased functional efficiency of the otherwise weak mitochondrial targeting sequence (generated by the Pro11-->Leu polymorphism) is not due to interference with the peroxisomal targeting or import of AGT.  相似文献   

2.
Peroxisome-to-mitochondrion mistargeting of the homodimeric enzyme alanine:glyoxylate aminotransferase 1 (AGT) in the autosomal recessive disease primary hyperoxaluria type 1 (PH1) is associated with the combined presence of a normally occurring Pro(11)Leu polymorphism and a PH1-specific Gly170Arg mutation. The former leads to the formation of a novel NH2-terminal mitochondrial targeting sequence (MTS), which although sufficient to direct the import of in vitro-translated AGT into isolated mitochondria, requires the additional presence of the Gly170Arg mutation to function efficiently in whole cells. The role of this mutation in the mistargeting phenomenon has remained elusive. It does not interfere with the peroxisomal targeting or import of AGT. In the present study, we have investigated the role of the Gly170Arg mutation in AGT mistargeting. In addition, our studies have led us to examine the relationship between the oligomeric status of AGT and the peroxisomal and mitochondrial import processes. The results obtained show that in vitro-translated AGT rapidly forms dimers that do not readily exchange subunits. Although the presence of the Pro(11)Leu or Gly170Arg substitutions alone had no effect on dimerization, their combined presence abolished homodimerization in vitro. However, AGT containing both substitutions was still able to form heterodimers in vitro with either normal AGT or AGT containing either substitution alone. Expression of various combinations of normal and mutant, as well as epitope-tagged and untagged forms of AGT in whole cells showed that normal AGT rapidly dimerizes in the cytosol and is imported into peroxisomes as a dimer. This dimerization prevents mitochondrial import, even when the AGT possesses an MTS generated by the Pro(11)Leu substitution. The additional presence of the Gly170Arg substitution impairs dimerization sufficiently to allow mitochondrial import. Pharmacological inhibition of mitochondrial import allows AGT containing both substitutions to be imported into peroxisomes efficiently, showing that AGT dimerization is not a prerequisite for peroxisomal import.  相似文献   

3.
《The Journal of cell biology》1990,111(6):2341-2351
We have previously shown that in some patients with primary hyperoxaluria type 1 (PH1), disease is associated with mistargeting of the normally peroxisomal enzyme alanine/glyoxylate aminotransferase (AGT) to mitochondria (Danpure, C.J., P.J. Cooper, P.J. Wise, and P.R. Jennings. J. Cell Biol. 108:1345-1352). We have synthesized, amplified, cloned, and sequenced AGT cDNA from a PH1 patient with mitochondrial AGT (mAGT). This identified three point mutations that cause amino acid substitutions in the predicted AGT protein sequence. Using PCR and allele-specific oligonucleotide hybridization, a range of PH1 patients and controls were screened for these mutations. This revealed that all eight PH1 patients with mAGT carried at least one allele with the same three mutations. Two were homozygous for this allele and six were heterozygous. In at least three of the heterozygotes, it appeared that only the mutant allele was expressed. All three mutations were absent from PH1 patients lacking mAGT. One mutation encoding a Gly----Arg substitution at residue 170 was not found in any of the control individuals. However, the other two mutations, encoding Pro----Leu and Ile----Met substitutions at residues 11 and 340, respectively, cosegregated in the normal population at an allelic frequency of 5-10%. In an individual homozygous for this allele (substitutions at residues 11 and 340) only a small proportion of AGT appeared to be rerouted to mitochondria. It is suggested that the substitution at residue 11 generates an amphiphilic alpha-helix with characteristics similar to recognized mitochondrial targeting sequences, the full functional expression of which is dependent upon coexpression of the substitution at residue 170, which may induce defective peroxisomal import.  相似文献   

4.
Most patients with the autosomal recessive disease primary hyperoxaluria type 1 (PH1) have a complete deficiency of alanine/glyoxylate aminotransferase (AGT) enzyme activity and immunoreactive protein. However a few possess significant residual activity and protein. In normal human liver, AGT is entirely peroxisomal, whereas it is entirely mitochondrial in carnivores, and both peroxisomal and mitochondrial in rodents. Using the techniques of isopycnic sucrose and Percoll density gradient centrifugation and quantitative protein A-gold immunoelectron microscopy, we have found that in two PH1 patients, possessing 9 and 27% residual AGT activity, both the enzyme activity and immunoreactive protein were largely mitochondrial and not peroxisomal. In addition, these individuals were more severely affected than expected from the levels of their residual AGT activity. In these patients, the PH1 appears to be due, at least in part, to a unique trafficking defect, in which peroxisomal AGT is diverted to the mitochondria. To our knowledge, this is the first example of a genetic disease caused by such interorganellar rerouting.  相似文献   

5.
Saccharomyces cerevisiae delta3,delta2-enoyl-CoA isomerase (Eci1p), encoded by ECI1, is an essential enzyme for the betaoxidation of unsaturated fatty acids. It has been reported, as well as confirmed in this study, to be a peroxisomal protein. Unlike many other peroxisomal proteins, Ecilp possesses both a peroxisome targeting signal type 1 (PTS1)-like signal at its carboxy-terminus (-HRL) and a PTS2-like signal at its amino-terminus (RIEGPFFIIHL). We have found that peroxisomal targeting of a fusion protein consisting of Eci1p in front of green fluorescent protein (GFP) is not dependent on Pex7p (the PTS2 receptor), ruling out a PTS2 mechanism, but is dependent on Pex5p (the PTS1 receptor). This Pex5p-dependence was unexpected, since the putative PTS1 of Ecilp is not at the C-terminus of the fusion protein; indeed, deletion of this signal (-HRL-) from the fusion did not affect the Pex5p-dependent targeting. Consistent with this, Pex5p interacted in two-hybrid assays with both Eci1p and Eci1PdeltaHRL. Ecilp-GFP targeting and Eci1pdeltaHRL interaction were abolished by replacement of Pex5p with Pex5p(N495K), a point-mutated Pex5p that specifically abolishes the PTS1 protein import pathway. Thus, Eci1p peroxisomal targeting does require the Pex5p-dependent PTS1 pathway, but does not require a PTS1 of its own. By disruption of ECI1 and DCI1, we found that Dci1p, a peroxisomal PTS1 protein that shares 50% identity with Eci1p, is necessary for Eci1p-GFP targeting. This suggests that the Pex5p-dependent import of Eci1p-GFP is due to interaction and co-import with Dci1p. Despite the dispensability of the C-terminal HRL for import in wild-type cells, we have also shown that this tripeptide can function as a PTS1, albeit rather weakly, and is essential for targeting in the absence of Dci1p. Thus, Eci1p can be targeted to peroxisomes by its own PTS1 or as a hetero-oligomer with Dcilp. These data demonstrate a novel, redundant targeting pathway for Eci1p.  相似文献   

6.
Primary hyperoxaluria type 1 (PH1) is a rare hereditary calcium oxalate kidney stone disease caused by a deficiency of the liver-specific pyridoxal-phosphate-dependent peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). About one third of patients are responsive to pharmacological doses of pyridoxine (vitamin B6), but its mechanism of action is unknown. Using stably transformed Chinese Hamster Ovary (CHO) cells expressing various normal and mutant forms of AGT, we have shown that pyridoxine increases the net expression, catalytic activity and peroxisomal import of the most common mistargeted mutant form of AGT (i.e. Gly170Arg on the background of the polymorphic minor allele). These multiple effects explain for the first time the action of pyridoxine in the most common group of responsive patients. Partial effects of pyridoxine were also observed for two other common AGT mutants on the minor allele (i.e. Phe152Ile and Ile244Thr) but not for the minor allele mutant AGT containing a Gly41Arg replacement. These findings demonstrate that pyridoxine, which is metabolised to pyridoxal phosphate, the essential cofactor of AGT, achieves its effects both as a prosthetic group (increasing enzyme catalytic activity) and a chemical chaperone (increasing peroxisome targeting and net expression). This new understanding should aid the development of pharmacological treatments that attempt to enhance efficacy of pyridoxine in PH1, as well as encouraging a re-evaluation of the extent of pyridoxine responsiveness in PH1, as more patients than previously thought might benefit from such treatment.  相似文献   

7.
Although human alanine:glyoxylate aminotransferase (AGT) is imported into peroxisomes by a Pex5p-dependent pathway, the properties of its C-terminal tripeptide (KKL) are unlike those of any other type 1 peroxisomal targeting sequence (PTS1). We have previously suggested that AGT might possess ancillary targeting information that enables its unusual PTS1 to work. In this study, we have attempted to locate this information and to determine whether or not it is a characteristic of all vertebrate AGTs. Using the two-hybrid system, we show that human AGT interacts with human Pex5p in mammalian cells, but not yeast cells. Using (immuno)fluorescence microscopic analysis of the distribution of various constructs expressed in COS cells, we show the following. 1) The putative ancillary peroxisomal targeting information (PTS1A) in human AGT is located entirely within the smaller C-terminal structural domain of 110 amino acids, with the sequence between Val-324 and Ile-345 being the most likely candidate region. 2) The PTS1A is present in all mammalian AGTs studied (human, rat, guinea pig, rabbit, and cat), but not amphibian AGT (Xenopus). 3) The PTS1A is necessary for peroxisomal import of human, rabbit, and cat AGTs, but not rat and guinea pig AGTs. We speculate that the internal PTS1A of human AGT works in concert with the C-terminal PTS1 by interacting with Pex5p indirectly with the aid of a yet-to-be-identified mammal-specific adaptor molecule. This interaction might reshape the tetratricopeptide repeat domain allosterically, enabling it to accept KKL as a functional PTS1.  相似文献   

8.
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disease caused by a deficiency of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). Three unrelated PH1 patients, who possess a novel complex phenotype, are described. At the enzymological level, this phenotype is characterized by a complete, or nearly complete, absence of AGT catalytic activity and reduced AGT immunoreactivity. Unlike normal individuals in whom the AGT is confined to the peroxisomal matrix, the immunoreactive AGT in these three patients was distributed approximately equally between the peroxisomes and mitochondria. The peroxisomal AGT appeared to be aggregated into amorphous core-like structures in which no other peroxisomal enzymes could be identified. Mutational analysis of the AGT gene showed that two of the three patients were compound heterozygotes for two previously unrecognized point mutations which caused Gly41→Arg and Phe152→Iso amino acid substitutions. The third patient was shown to be a compound heterozygote for the Gly41→Arg mutation and a previously recognized Gly170→Arg mutation. All three patients were homozygous for the Pro11→Leu polymorphism that had been found previously with a high allelic frequency in normal populations. It is suggested that the Phe152→Iso and Gly170→Arg substitutions, which are only eighteen residues apart and located in the same highly conserved internal region of 58 amino acids, might be involved in the inhibition of peroxisomal targeting and/or import of AGT and, in combination with the Pro11→Leu polymorphism, be responsible for its aberrant mitochondrial compartmentalization. On the other hand, the Gly41→Arg substitution, either in combination with the Pro11→Leu polymorphism or by itself, is predicted to be responsible for the intraperoxisomal aggregation of the AGT protein.  相似文献   

9.
Johnson TL  Olsen LJ 《Plant physiology》2003,133(4):1991-1999
Most peroxisomal matrix proteins possess a carboxy-terminal tripeptide targeting signal, termed peroxisomal targeting signal type 1 (PTS1), and follow a relatively well-characterized pathway of import into the organelle. The peroxisomal targeting signal type 2 (PTS2) pathway of peroxisomal matrix protein import is less well understood. In this study, we investigated the mechanisms of PTS2 protein binding and import using an optimized in vitro assay to reconstitute the transport events. The import of the PTS2 protein thiolase differed from PTS1 protein import in several ways. Thiolase import was slower than typical PTS1 protein import. Competition experiments with both PTS1 and PTS2 proteins revealed that PTS2 protein import was inhibited by addition of excess PTS2 protein, but it was enhanced by the addition of PTS1 proteins. Mature thiolase alone, lacking the PTS2 signal, was not imported into peroxisomes, confirming that the PTS2 signal is necessary for thiolase import. In competition experiments, mature thiolase did not affect the import of a PTS1 protein, but it did decrease the amount of radiolabeled full-length thiolase that was imported. This is consistent with a mechanism by which the mature protein competes with the full-length thiolase during assembly of an import complex at the surface of the membrane. Finally, the addition of zinc to PTS2 protein imports increased the level of thiolase bound and imported into the organelles.  相似文献   

10.
We report the characterization of ScPex8p, which is essential for peroxisomal biogenesis in Saccharomyces cerevisiae. Cells lacking Pex8p are characterized by the presence of peroxisomal membrane ghosts and mislocalization of peroxisomal matrix proteins of the PTS1 and PTS2 variety to the cytosol. Pex8p is tightly associated with the lumenal face of the peroxisomal membrane. Consistent with its intraperoxisomal localization, Pex8p contains a peroxisomal targeting signal 1, and it interacts with the PTS1 receptor Pex5p. However, the Pex5p/Pex8p association is also observed upon deletion of the PTS1 of Pex8p, suggesting that Pex8p contains a second binding site for Pex5p. The pex8Delta mutant phenotype and the observed PTS1-independent interaction with the PTS1 receptor suggest that Pex8p is involved in protein import into the peroxisomal matrix. In pex8Delta cells, the PTS1 and PTS2 receptor still associate with membrane bound components of the protein import machinery, supporting the assumption that the Pex8p function in protein translocation follows the docking event.  相似文献   

11.
Recently, we isolated the sulfite oxidase (SO) gene from Arabidopsis thaliana and characterized the purified SO protein. The purpose of the present study was to determine the subcellular localization of this novel plant enzyme. Immunogold electron-microscopic analysis showed the gold labels nearly exclusively in the peroxisomes. To verify this finding, green fluorescent protein was fused to full-length plant SO including the putative peroxisomal targeting signal 1 (PTS1) 'SNL' and expressed in tobacco leaves. Our results showed a punctate fluorescence pattern resembling that of peroxisomes. Co-labelling with MitoTracker-Red excluded that the observed fluorescence was due to mitochondrial sorting. By investigation of deleted or mutated PTS1, no functional peroxisomal targeting signal 2 (PTS2) could be detected in plant SO. This conclusion is supported by expression studies in Pichia pastoris mutants with defined defects either in PTS1- or PTS2-mediated peroxisomal import.  相似文献   

12.
13.
Serine: pyruvate/alanine:glyoxylate aminotransferase (SPT or SPT/AGT) of rat liver is a unique enzyme of dual subcellular localization, and exists in both mitochondria and peroxisomes. To characterize a peroxisomal targeting signal of rat liver SPT, a number of C-terminal mutants were constructed and their subcellular localization in transfected COS-1 cells was examined. Deletion of C-terminal NKL, and point mutation of K2 (the second Lys from the C-terminus), K4 and E15 caused accumulation of translated products in the cytoplasm. This suggests that the PTS of SPT is not identical to PTS1 (the C-terminal SKL motif) in that it is not restricted to the C-terminal tripeptide. In vitro synthesized precursor for mitochondrial SPT was highly sensitive to the proteinase K digestion, whereas peroxisomal SPT (SPTp) was fairly resistant to the protease. In in vitro import experiment with purified peroxisomes, however, STPp recovered in the peroxisomal fraction was very sensitive to the protease. These results suggest that the mitochondrial precursor is synthesized as an unfolded form and is translocated into the mitochondrial matrix, whereas SPTp is synthesized as a folded form and its conformation changes to an unfolded form just before translocation into peroxisomes.  相似文献   

14.
Primary hyperoxaluria type 1 (PH1) is an inherited disorder of glyoxylate metabolism caused by a deficiency of the hepatic peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT; EC 2.6.1.44) [FEBS Lett (1986) 201:20]. The aim of the present study was to investigate the intracellular distribution of immunoreactive AGT protein, using protein A-gold immunocytochemistry, in normal human liver and in livers of PH1 patients with (CRM+) or without (CRM-) immunologically crossreacting enzyme protein. In all CRM+ individuals, which included three controls, a PH1 heterozygote and a PH1 homozygote immunoreactive AGT protein was confined to peroxisomes, where it was randomly dispersed throughout the peroxisomal matrix with no obvious association with the peroxisomal membrane. No AGT protein could be detected in the peroxisomes or other cytoplasmic compartments in the livers of CRM- PH1 patients (homozygotes). The peroxisomal labeling density in the CRM+ PH1 patient, who was completely deficient in AGT enzyme activity, was similar to that of the controls. In addition, in the PH1 heterozygote, who had one third normal AGT enzyme activity, peroxisomal labeling density was reduced to 50% of normal.  相似文献   

15.
Glyoxylate is an immediate precursor of oxalate, but in its metabolism the conversion into glycine catalyzed by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT) appears to be the main route. When SPT/AGT is missing as in the case of primary hyperoxaluria type 1 (PH1) more glyoxylate is used for the oxalate production, resulting in calcium oxalate urolithiasis and finally systemic oxalosis. SPT/AGT is a unique enzyme of species-specific dual organelle localization; it is located largely in mitochondria in carnivores and entirely in peroxisomes in herbivores and man. For herbivores, the peroxisomal localization of SPT/AGT is indispensable to avoid massive production of oxalate, probably because liver peroxisomes are the main site of glyoxylate production from glycolate, and plants contain glycolate much more than animal tissues. Recently, we took charge of laboratory examination for 8 cases of primary hyperoxaluria in Japan, and felt that symptoms of some of the Japanese PH1 patients are apparently milder than those of Western patients. The reason of this is not clear, but from the above mentioned seemingly indispensable association of grass-eating with the peroxisomal localization of SPT/AGT it may be related, at least in part, to the food habit of Japanese, especially that of old generation, that they prefer boiled greens rather than frying or raw vegetables.  相似文献   

16.
Several peroxisomal proteins do not contain the previously identified tripeptide peroxisomal targeting signal (PTS) at their carboxy-termini. One such protein is the peroxisomal 3-ketoacyl CoA thiolase, of which two types exist in rat [Hijikata et al. (1990) J. Biol. Chem., 265, 4600-4606]. Both rat peroxisomal thiolases are synthesized as larger precursors with an amino-terminal prepiece of either 36 (type A) or 26 (type B) amino acids, that is cleaved upon translocation of the enzyme into the peroxisome. The prepieces are necessary for import of the thiolases into peroxisomes because expression of an altered cDNA encoding only the mature thiolase, which lacks any prepiece, results in synthesis of a cytosolic enzyme. When appended to an otherwise cytosolic passenger protein, the bacterial chloramphenicol acetyltransferase (CAT), the prepieces direct the fusion proteins into peroxisomes, demonstrating that they encode sufficient information to act as peroxisomal targeting signals. Deletion analysis of the thiolase B prepiece shows that the first 11 amino acids are sufficient for peroxisomal targeting. We conclude that we have identified a novel PTS that functions at amino-terminal or internal locations and is distinct from the C-terminal PTS. These results imply the existence of two different routes for targeting proteins into the peroxisomal matrix.  相似文献   

17.
Pex14p is a central component of the peroxisomal protein import machinery, which has been suggested to provide the point of convergence for PTS1- and PTS2-dependent protein import in yeast cells. Here we describe the identification of a human peroxisome-associated protein (HsPex14p) which shows significant similarity to the yeast Pex14p. HsPex14p is a carbonate-resistant peroxisomal membrane protein with its C terminus exposed to the cytosol. The N terminus of the protein is not accessible to exogenously added antibodies or protease and thus might protrude into the peroxisomal lumen. HsPex14p overexpression leads to the decoration of tubular structures and mislocalization of peroxisomal catalase to the cytosol. HsPex14p binds the cytosolic receptor for the peroxisomal targeting signal 1 (PTS1), a result consistent with a function as a membrane receptor in peroxisomal protein import. Homo-oligomerization of HsPex14p or interaction of the protein with the PTS2-receptor or HsPex13p was not observed. This distinguishes the human Pex14p from its counterpart in yeast cells and thus supports recent data suggesting that not all aspects of peroxisomal protein import are conserved between yeasts and humans. The role of HsPex14p in mammalian peroxisome biogenesis makes HsPEX14 a candidate PBD gene for being responsible for an unrecognized complementation group of human peroxisome biogenesis disorders.  相似文献   

18.
Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by a peroxisomal targeting sequence (PTS) and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the peroxisomal lumen, whereas the receptor is released to the cytosol for further rounds of protein import. This cycle is controlled by the ubiquitination status of the receptor, which is best understood for the PTS1‐receptor. While polyubiquitination of PTS‐receptors results in their proteasomal degradation, the monoubiquitinated PTS‐receptors are exported to the cytosol and recycled for further rounds of protein import. Here, we describe the identification of two ubiquitination cascades acting on the PTS2 co‐receptor Pex18p. Using in vivo and in vitro approaches, we demonstrate that the polyubiquitination of Pex18p requires the ubiquitin‐conjugating enzyme (E2) Ubc4p, which cooperates with the RING (really interesting new gene)‐type ubiquitin‐protein ligases (E3) Pex2p as well as Pex10p. Monoubiquitination of Pex18p depends on the E2 enzyme Pex4p (Ubc10p), which functions in concert with the E3 enzymes Pex12p and Pex10p. Our findings for the PTS2‐pathway complement the data on PTS1‐receptor ubiquitination and add up to a unified concept of the ubiquitin‐based regulation of peroxisomal import .  相似文献   

19.
The gene encoding the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT, EC. 2.6.1.44) exists as two common polymorphic variants termed the “major” and “minor” alleles. The P11L amino acid replacement encoded by the minor allele creates a hidden N-terminal mitochondrial targeting sequence, the unmasking of which occurs in the hereditary calcium oxalate kidney stone disease primary hyperoxaluria type 1 (PH1). This unmasking is due to the additional presence of a common disease-specific G170R mutation, which is encoded by about one third of PH1 alleles. The P11L and G170R replacements interact synergistically to reroute AGT to the mitochondria where it cannot fulfill its metabolic role (i.e. glyoxylate detoxification) effectively. In the present study, we have reinvestigated the consequences of the interaction between P11L and G170R in stably transformed CHO cells and have studied for the first time whether a similar synergism exists between P11L and three other mutations that segregate with the minor allele (i.e. I244T, F152I, and G41R). Our investigations show that the latter three mutants are all able to unmask the cryptic P11L-generated mitochondrial targeting sequence and, as a result, all are mistargeted to the mitochondria. However, whereas the G170R, I244T, and F152I mutants are able to form dimers and are catalytically active, the G41R mutant aggregates and is inactive. These studies open up the possibility that all PH1 mutations, which segregate with the minor allele, might also lead to the peroxisome-to-mitochondrion mistargeting of AGT, a suggestion that has important implications for the development of treatment strategies for PH1.  相似文献   

20.
We identified a Saccharomyces cerevisiae peroxisomal membrane protein, Pex13p, that is essential for protein import. A point mutation in the COOH-terminal Src homology 3 (SH3) domain of Pex13p inactivated the protein but did not affect its membrane targeting. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, a receptor for proteins with a type I peroxisomal targeting signal (PTS1), as its ligand. Pex13p SH3 interacted specifically with Pex5p in vitro. We determined, furthermore, that Pex5p was mainly present in the cytosol and only a small fraction was associated with peroxisomes. We therefore propose that Pex13p is a component of the peroxisomal protein import machinery onto which the mobile Pex5p receptor docks for the delivery of the selected PTS1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号