首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of soil layering on the growth and nutrient content of wheat shoots and roots was studied. PVC containers (120 cm long and 25 cm inside diameter) were filled with layers of loam and loamy sand. Both roots and shoots dry weight increased as the thickness of loam layer increased. The root:shoot ratios decreased throughout the growing season. The N, P and K content of the shoots peaked at two weeks before anthesis, while shoot dry weight peaked at anthesis. The ranges of shoot content of N, P and K at anthesis for the different treatments were 6–25, 8–25 and 5–25% of the total plant nutrients, respectively. Late in the season the translocation rate of nutrients from the shoots to the seeds were in the following order N>P>K.  相似文献   

2.
Application of organic fertilizers and charcoal increase nutrient stocks in the rooting zone of crops, reduce nutrient leaching and thus improve crop production on acid and highly weathered tropical soils. In a field trial near Manaus (Brazil) 15 different amendment combinations based on equal amounts of carbon (C) applied through chicken manure (CM), compost, charcoal, and forest litter were tested during four cropping cycles with rice (Oryza sativa L.) and sorghum (Sorghum bicolor L.) in five replicates. CM amendments resulted in the highest (P < 0.05) cumulative crop yield (12.4 Mg ha−1) over four seasons. Most importantly, surface soil pH, phosphorus (P), calcium (Ca), and magnesium (Mg) were significantly enhanced by CM. A single compost application produced fourfold more grain yield (P < 0.05) than plots mineral fertilized in split applications. Charcoal significantly improved plant growth and doubled grain production if fertilized with NPK in comparison to the NPK-fertilizer without charcoal (P < 0.05). The higher yields caused a significantly greater nutrient export in charcoal-amended fields, but available nutrients did not decrease to the same extent as on just mineral fertilized plots. Exchangeable soil aluminum (Al) was further reduced if mineral fertilizer was applied with charcoal (from 4.7 to 0 mg kg−1). The resilience of soil organic matter (SOM) in charcoal amended plots (8 and 4% soil C loss, mineral fertilized or not fertilized, respectively) indicates the refractory nature of charcoal in comparison to SOM losses over 20 months in CM (27%), compost amended (27%), and control plots (25% loss).  相似文献   

3.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

4.
Durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husnot) was grown under conditions to promote mineral biofortification at the grain level. Along plant development, biomass accumulation and the kinetics of nutrients accumulation were assessed, identifying the nutrient fluxes of roots and shoots, and the timescale constraints of crop biofortification. Plants were grown under environmentally controlled conditions, submitted to four increasing concentrations of nutrient solutions (1-, 2-, 4- and 6-fold) of micro- (Fe, Zn, Cu and Mn) and macronutrients (Ca, K, P and Mg). The threshold of mineral toxicity was not reached as evaluated through plant biomass accumulation, but considering grain yield, the twofold nutrient concentration was the best treatment for biofortification. In the different treatments, the contents and the mineral unrests of roots uptake and shoots translocation varied, at different magnitudes and trends, before the onset of booting and from the physiological maturity onwards. Except for Cu, all mineral nutrients were mainly detected in the bran and embryo of the grains; therefore, the production of biofortified pasta for human consumption requires the use of integral semolina.  相似文献   

5.
Mesorhizobium strain RC3, isolated from chickpea nodules, tolerated chromium up to 500 μg/ml and reduced it by 90% at pH 7 after 120 h. It produced plant growth-promoting substances, both in the presence and absence of chromium. Strain RC3 produced 35 μg indole acetic acid/ml in Luria Bertani broth with 100 mg tryptophan/ml, which decreased with an increase in chromium concentration. Chromium application to soil at 136 mg/kg was toxic to chickpea plants but when RC3 at 136 mg/kg was also added, it increased the dry matter accumulation, number of nodules, seed yield and grain protein by 71, 86, 36 and 16%, respectively, compared to non-inoculated plants. Nitrogen in roots and shoots were increased by 46 and 40%, respectively, at 136 mg Cr/kg. The bio-inoculant decreased the uptake of chromium by 14, 34 and 29% in roots, shoots and grains, respectively.  相似文献   

6.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.  相似文献   

7.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   

8.
In vitro culture ofTanacetum parthenium (L.) Sch.Bip. was initiated from aseptically germinated seedlings. culture was derived from nodal explants of the seedlings on MS medium containing 4.44 μM (1.0 mg 1−1 ) 6-benzylaminopurine (BA) and 0.54 μM (0.1 mg 1−1) of α-naphthaleneacetic acid (NAA). Transformed roots were obtained by infection of the stems of aseptically grown seedlings withAgrobacterium rhizogenes LBA 9402. The parthenolide content in the cultivated plant organs was investigated by RP-HPLC. The production of the compound was strongly influenced by the genotype of the parent plant and ranged from 0.13% to 0.75% dry weight in the shoots of the rooted plantlets grownin vitro. The yield of the compound in multiple shoot cultures ofT.parthenium reached 60% of that found in the shoots of rooted plantlets. In contrast to shoots, only trace amounts of parthenolide could be detected in some clones of transformed roots and the roots of plantlets.  相似文献   

9.
Transparent plastic minirhizotron tubes have been used to evaluate spatial and temporal growth activities of plant root systems. Root number was estimated from video recordings of roots intersecting minirhizotron tubes and of washed roots extracted from monoliths of the same soil profiles at the physiological maturity stage of a maize (Zea mays L.) crop. Root length was measured by the line intercept (LI) and computer image processing (CIP) methods from the monolith samples.There was a slight significant correlation (r=0.28, p<0.005) between the number of roots measured by minirhizotron and root lengths measured by the LI method, however, no correlation was found with the CIP method. Using a single regression line, root number was underestimated by the minirhizotron method at depths between 0–7.6 cm. A correlation was found between root length estimated by LI and CIP. The slope of estimated RLD was significant with depth for these two methods. Root length density (RLD) measured by CIP showed a more erratic decline with distance from the plant row and soil surface than the LI method.  相似文献   

10.
 A field experiment was conducted to determine the seasonal patterns of arbuscular mycorrhiza (AM) in a dryland winter wheat (Triticum aestivum L.) system and to determine wheat growth and P uptake responses to inoculation with mycorrhizal fungus. Broadcast-incorporated treatments included (1) no inoculation with mycorrhizal fungus, with and without P fertilizer, and (2) mycorrhizal fungal inoculation at a rate of 5000 spores of Glomus intraradices (Schenck and Smith), per 30 cm in each row, with and without fertilizer P. Winter wheat was seeded within a day after treatments were imposed, and roots were sampled at five growth stages to quantify AM. Shoot samples were also taken for determination of dry matter, grain yield and yield components, and N and P uptake. No AM infection was evident during the fall months following seeding, which was characterized by low soil temperature, while during the spring, the AM increased gradually. Increases in wheat grain yields by enhanced AM were of similar magnitude to the response obtained from P fertilization. However, responses differed at intermediate growth stages. At the tillering stage, P uptake was mainly increased by P fertilization but not by fungal inoculation. At harvest, enhanced AM increased P uptake regardless of whether or not fertilizer P was added. The AM symbiosis increased with rising soil temperatures in the spring, in time to enhance late-season P accumulation and grain production. Accepted: 15 July 1998  相似文献   

11.
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.  相似文献   

12.
Split-root system has been developed to better understand plant response to environmental factors, by exposing two separate parts of a single root system to heterogeneous situations. Surprisingly, there is no study attempting to maximize plant survival, growth and root system structure through a statistically sound comparison of different experimental protocols. Here, we aim at optimizing split-root systems on the model plant for Poaceae and cereals Brachypodium distachyon in terms of plant survival, number of roots and their equal distribution between the two compartments. We tested the effect of hydroponic or soil as growing media, with or without change of media at the transplantation step. The partial or total cutting of roots and/or shoots was also tested in different treatments as it could have an influence on plant access to energy and water and consequently on survival, growth and root development. Growing plants in soil before and after transplantation in split-root system was the best condition to get the highest survival rate, number of coleoptile node axile roots and growth. Cutting the whole root system was the best option to have a high root biomass and length at the end of the experiment. However, cutting shoots was detrimental for plant growth, especially in terms of root biomass production. In well-watered conditions, a plant submitted to a transfer in a split-root system is thus mainly lacking energy to produce new roots thanks to photosynthesis or adaptive autophagy, not water or nutrients.  相似文献   

13.
The aims of this research were to test the influence of surface soil drying on photosynthesis, root respiration and grain yield of spring wheat (Triticum aestivum), and to evaluate the relationship between root respiration and grain yield. Wheat plants were grown in PVC tubes 120 cm in length and 10 cm in diameter. Three water regimes were employed: (a) all soil layers were irrigated close to field water capacity (CK); (b) upper soil layers (0–40 cm from top) drying (UD); (c) lower soil layer (80–120 cm from top) wet (LW). The results showed that although upper drying treatment maintained the highest root biomass, root respiration and photosynthesis rates at anthesis, the root respiration of the former was significantly (P < 0.05) lower than the latter at the jointing stage. There were no differences in water use efficiency or harvest index between plants from the upper drying and well-watered treatment. However, the grain weight for plants in the upper drying treatment was significantly (P< 0.05) higher than that of in well-watered control. The results suggest that reduced root respiration rate and the amount of photosynthates utilized by root respiration in early season growth may also have contributed to improve crop production under soil drying. Reduced root activity and root respiration rate, in the early growth stage, not only increased the photosynthate use efficiency (root respiration rate: photosynthesis ratio), but also grain yield. Rooting into a deeper wet soil profile before grain filling was crucial for spring wheat to achieve a successful seedling establishment and high grain yield.  相似文献   

14.
Summary The influence of irrigation and nitrogen fertilization in early summer on root and shoot growth of Atriplex confertifolia, a C4 shrub species, was examined in a cold-winter desert community in northern Utah. Soil water and xylem pressure potentials were monitored during the summer period.At the time of watering the surface soil (0–30 cm) was dry but there were turgid fine roots in this horizon. Watering of the soil reduced plant water stress from-30 to-15 bars (dawn values) indicating that roots near the surface were capable of absorbing water, and induced root growth in the 0–30 cm zone. The addition of N to the water treatment did not further increase root production. However, watering and watering +N fertilizer failed to stimulate shoot elongation or any dry weight increase of shoots. This shoot dormancy during summer is not typical of C4 plants and is probably associated with adaptation to the cool arid environment.This work was carried out while the senior author was on study leave from CSIRO  相似文献   

15.
Although the use of 15N fertilizers to measure nitrogen (N2) fixed in crops has increased substantially in recent years, some methodological uncertainties still remain unresolved. The results obtained from a greenhouse study of soybean [Glycine max. (L.) Merrill] inoculated by six different methods have been examined for potential errors arising from incorporating 15N labelled fertilizer into soil to estimate N2 fixed in pods or shoots or the whole plant at three growth stages (50% flowering, pod-initiation and physiological maturity) using as reference crops, an uninoculated soybean cultivar and a non-nodulating soybean isoline. At the first harvest when N2 fixed was very low, the estimates of N2 fixed by the two reference crops did not match. At this stage the uninoculated soybean estimated about four times as much N2 fixed in the symbiotic soybean as that measured using the non-nodulating soybean. For the second and third harvests, there were substantial increases in N2 fixed, and both the non-nodulating and uninoculated soybean were equally suitable as reference crops for assessing N2 fixed in the symbiotic soybean. These results indicate how critical and difficult the choice of the reference crop could be at early harvests, or when N2 fixed is low. Even though there were significant differences in 15N enrichments in different organs (generally nodules < pods < roots < shoots), the estimates of N2 fixed in soybean plants obtained by excluding roots and nodules did not differ much from those based on the whole plant. Of the above-ground organs, % N2 fixed in pods (containing seeds) was closest to that of the whole plant (similar at P<0.05 at physiological maturity). However, the total N2 fixed in pods or shoots was substantially lower than that fixed by the whole plant (P<0.05), although that for the pods and enclosed seeds once again was closer to N2 fixed in the whole plant than that in the shoots.  相似文献   

16.
Root sprouting in Rumex acetosella under different nutrient levels   总被引:5,自引:0,他引:5  
Growth of Rumex acetosella, a root sprouting plant, was studied in a pot experiment. Each plant of R. acetosella consisted of two ramets which were interconnected by a root about 9 cm long. One of the ramets was placed in a compartment with nutrient-rich soil, the other with nutrient-poor soil. The root connection between the ramets either remained intact or was severed at the nutrient interface after planting. Growth of new roots was prevented at the nutrient interface.The presence of a connection between the ramets did not affect biomass or shoot production in either soil compartment, indicating a poor integration of the interconnected plant systems. In the nutrient-rich environment, two to four times more shoots and biomass were produced than in the low nutrient regime. A large proportion of buds initiated on roots remained dormant, forming a bud bank. When the number of shoots or buds was expressed per g of root dry weight or per m of root length, the nutrient response was no longer evident or, in a few cases, a significant effect in the opposite direction was obtained. These results show that the greater production of buds and shoots in the nutrient-rich environment reflected an allometric relationship between root biomass and the number of buds and shoots initiated on the roots.  相似文献   

17.

Background and aims

Growth and distribution of fine roots closely depend on soil resource availability and affect soil C distribution in return. Understanding of relationships between fine root distribution and soil C can help to predict the contribution of fine root turnover to soil C accumulation.

Methods

A study was conducted in a subtropical Cunninghamia lanceolata plantation to assess the fine root mass density (FRMD), fine root C density (FRCD) of different fine root groups as well as their relations with soil C.

Results

The FRMD and FRCD of short-lived roots, dead roots and herb roots peaked in the 0–10 cm soil layer and decreased with soil depth, while FRMD, FRCD of long-lived roots peaked in the 10–20 cm soil layer. Soil C was positively related to FRMD and FRCD of total fine roots (across all three soil layers), dead roots (0–10 cm) and herb roots (10–20 cm) as well as FRCD of short-lived roots (20–40 cm) (P <0.05).

Conclusions

Soil C was mainly affected by herb roots in upper soil layers and by woody plant roots in deeper soil layers.  相似文献   

18.
 在自动控制的遮雨棚中,用盆栽法研究了不同水分条件下春小麦(Triticum aestivum)根系耗碳过程及与籽粒产量的关系。设高(W)、中(M)、低(S)3个水分处理,试验品种为`陇春8139-2'(L)和`定西24'(D)。在开花期及之前,根系的日生物量碳、日呼吸耗碳和日分泌耗碳量占根系日总耗碳量的比例平均为26%、58%和16%。在成熟期,W、M处理的根日生物量碳的下降(负值)在两品种之间没有显著差异,而在S处理中,D品种根生物量碳日下降幅度显著高于L品种,日呼吸耗碳量和日分泌耗碳量也最低,致使其根日生物量碳下降超过根总耗碳量的100倍,而根日呼吸耗碳量和日分泌耗碳量分别是根日总耗碳量的7.89倍和3.75倍,与其它处理/品种形成了鲜明对比。以根系日呼吸和日分泌耗碳之和占日光合固碳量的百分比来看,L品种在W、M和S处理中分别为53%、52%和83%,D品种分别为58%、49%和55%。两个品种根系碳消耗比例最低的是M处理,S处理的D品种远低于L品种。两品种产量水平接近,湿润条件下,L品种产量略高于D品种。籽粒产量与平均产量之比(Y/Ym)L品种在3个处理中分别为1.34, 1.14和0.53;D品种分别为1.04, 1.06和0.90。干旱条件下D品种保持了良好的产量稳定性。对D品种而言,中、重度干旱条件下光合固碳的相对稳定和根系耗碳量的降低是植物既能提高水分利用效率又能保持较高籽粒产量的主要原因。  相似文献   

19.
本研究通过分析开花期灌水对小麦产量、植株养分分配和土壤养分分布的影响及其与根系特性的关系,为小麦充分利用水肥资源提供理论支撑。以抗旱高产品种‘洛麦28'和高光效品种‘百农207'为材料,采用2 m深土柱栽培方法,设置开花期灌水(T1)和开花期不灌水(T2)两个水分处理,测定了不同组织器官、不同土层土壤氮、磷、钾含量及根系分布特性等指标。结果表明: 小麦收获期土壤中铵态氮、速效磷和速效钾主要分布在0~80 cm土层中,硝态氮主要分布在80 cm以下土层中,开花期灌水促进小麦吸收0~60 cm土层的铵态氮、速效磷、速效钾和80 cm以下土层的硝态氮,减少了硝态氮向深层土壤的淋溶;小麦根系主要集中在0~60 cm土层中,随土壤深度的增加而减少。成熟期干物质积累量、全氮和全磷主要分配在小麦籽粒中,而全钾主要分配在茎秆中;开花期灌水显著增加了小麦百粒重,提高了小麦产量;根系形态指标与土壤硝态氮在0~40 cm土层中呈显著负相关,与土壤铵态氮在80~100 cm土层中呈极显著正相关,与土壤速效磷在0~100 cm土层中呈显著正相关。开花期灌水促进了根系在小麦生育末期对土壤养分的充分吸收,延长了养分从营养器官向生殖器官的转运功能期,使营养器官中的养分充分地转运到籽粒中去,增加小麦粒重,进而提高产量。  相似文献   

20.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号