首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   

2.
The head shell of bacteriophage T4 contains most likely only five different protein species: gp20, gp231, gp241, hoc and soc. Only gp231, the major head protein, hoc and soc are found in the tubular part of elongated capsids of giant bacteriophage T4. Giant T2 bacteriophages contain only gp231 in their tubular part. This difference between T2 and T4 bacteriophages correlates with some of their physico-chemical properties like instability/stability, respectively of the capsid to dissociation at higher pH or in the presence of detergents.In an attempt to understand this phenomenon at a molecular level, we present in this paper the complete primary structure of soc protein and discuss its relevance to future work.  相似文献   

3.
The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.  相似文献   

4.
Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro.The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly internalizes terminase regions within the portal in the packasome complex. Both similarities and differences are seen in comparison to analogous sites which have been identified in phages T3 and lambda.  相似文献   

5.
Bacteriophage T4 carrying an amber mutation in gene 22 plus an amber mutation in gene 21 form aberrant, tubular structures termed rough polyheads, instead of complete phage when they infect Escherichia coli B. These rough polyheads consist almost entirely of the major capsid protein in its uncleaved form (gp23). When rough polyheads are treated under mild conditions with any of the five proteases, trypsin, chymotrypsin, thermolysin, pronase, or the protease from Staphylococcus aureus V8, the gp23 is rapidly hydrolyzed at a limited number of peptide bonds. In contrast, cleaved capsid protein (gp23) in mature phage capsids is completely resistant to proteolysis under the same conditions. A major project in this laboratory requires determining the primary structure of gp23, a large protein (Mr = 58,000) quite rich in those amino acids at which cleavages are achieved by conventional means. Recovery of peptides from the complex mixtures resulting from such cleavages proved to be extremely difficult. The limited proteolysis of gp23 in rough polyheads had yielded a set of large, easily purified fragments which are greatly simplifying the task of determining the primary structure of this protein.  相似文献   

6.
Band 4.2 is a major protein of the erythrocyte membrane which has been immunologically detected in a variety of cell types and is apparently essential for normal erythrocyte membrane function. Since band 4.2 has unusual solubility and membrane binding properties and has an N-terminal glycine following the initiating methionine, we explored the possibility that band 4.2 is myristylated. When Sf9 cells infected with a recombinant band 4.2 Baculovirus were incubated with [3H]myristic acid, label became incorporated into recombinant band 4.2 protein and resisted extraction with hydroxylamine. Consistent with N-terminal myristylation, the incorporation of label was dependent upon protein synthesis. The fatty acid covalently bound to recombinant band 4.2 was definitively identified as myristic acid by recovering the fatty acid after hydrolysis of band 4.2 and examining its migration relative to standards in thin layer chromatography. It was determined that native erythrocyte band 4.2 is an N-myristylated protein by reverse phase high performance liquid chromatography detection of an azlactone derivative of N-myristylglycine after mild acid hydrolysis and azlactone derivatization of the purified protein. Study of myristylation of band 4.2, an abundant normal cellular protein, and its role in membrane binding may produce insights relevant to other myristylated cellular proteins.  相似文献   

7.
The capsid of bacteriophage T4 is composed of two essential structural proteins, gp23, the major constituent of the capsid, and gp24, a less prevalent protein that is located in the pentameric vertices of the capsid. gp24 is required both to stabilize the capsid and to allow it to be further matured. This requirement can be eliminated by bypass-24 (byp24) mutations within g23. We have isolated, cloned and sequenced several new byp24 mutations. These mutations are cold-sensitive in the absence of gp24, and are located in regions of g23 not known to contain any other mutations affecting capsid assembly. The cold-sensitivity of the byp24 mutations can be reduced by further mutations within g23 (trb mutations). Cloning and sequencing of these trb mutations has revealed that they lie in regions of g23 that contain clusters of mutations that cause the production of high levels of petite and giant phage (ptg mutations). Despite the proximity of the trb mutations to the ptg mutations, none of the ptg mutations has a Trb phenotype. The mutation ptE920g, which is also located near one of the ptg clusters, and which produces only petite and wild-type phage, has been shown to confer a Trb but not a Byp24 phenotype. The relevance of these observations to our understanding of capsid assembly is discussed.  相似文献   

8.
We have used differential scanning calorimetry in conjunction with cryo-electron microscopy to investigate the conformational transitions undergone by the maturing capsid of phage T4. Its precursor shell is composed primarily of gp23 (521 residues): cleavage of gp23 to gp23* (residues 66 to 521) facilitates a concerted conformational change in which the particle expands substantially, and is greatly stabilized. We have now characterized the intermediate states of capsid maturation; namely, the cleaved/unexpanded, state, which denatures at tm = 60 degrees C, and the uncleaved/expanded state, for which tm = 70 degrees C. When compared with the precursor uncleaved/unexpanded state (tm = 65 degrees C), and the mature cleaved/expanded state (tm = 83 degrees C, if complete cleavage precedes expansion), it follows that expansion of the cleaved precursor (delta tm approximately +23 degrees C) is the major stabilizing event in capsid maturation. These observations also suggest an advantage conferred by capsid protein cleavage (some other phage capsids expand without cleavage): if the gp23-delta domains (residues 1 to 65) are not removed by proteolysis, they impede formation of the stablest possible bonding arrangement when expansion occurs, most likely by becoming trapped at the interface between neighboring subunits or capsomers. Icosahedral capsids denature at essentially the same temperatures as tubular polymorphic variants (polyheads) for the same state of the surface lattice. However, the thermal transitions of capsids are considerably sharper, i.e. more co-operative, than those of polyheads, which we attribute to capsids being closed, not open-ended. In both cases, binding of the accessory protein soc around the threefold sites on the outer surface of the expanded surface lattice results in a substantial further stabilization (delta tm = +5 degrees C). The interfaces between capsomers appear to be relatively weak points that are reinforced by clamp-like binding of soc. These results imply that the "triplex" proteins of other viruses (their structural counterparts of soc) are likely also to be involved in capsid stabilization. Cryo-electron microscopy was used to make conclusive interpretations of endotherms in terms of denaturation events. These data also revealed that the cleaved/unexpanded capsid has an angular polyhedral morphology and has a pronounced relief on its outer surface. Moreover, it is 14% smaller in linear dimensions than the cleaved/expanded capsid, and its shell is commensurately thicker.  相似文献   

9.
10.
11.
Folding of bacteriophage T4 major capsid protein, gene product 23 (534 a.a.), is aided by two proteins: E. coli GroEL chaperonin and viral gp31 co-chaperonin. In the present work a set of mutants with extensive deletions inside gene 23 using controlled digestion with Bal31 nuclease has been constructed. Proteins with deletions were co-expressed from plasmid vectors with phage gp31 co-chaperonin. Deletions from 8 to 33 a.a. in the N-terminal region of the gp23 molecule covering the protein proteolytic cleavage site during capsid maturation have no influence on the mutants' ability to produce in E. coli cells proteins which form regular structures—polyheads. Deletions in other regions of the polypeptide chain (187-203 and 367-476 a.a.) disturb the correct folding and subsequent assembly of gp23 into polyheads.  相似文献   

12.
We have investigated the conformational basis of the expansion transformation that occurs upon maturation of the bacteriophage T4 prohead, by using laser Raman spectroscopy to determine the secondary structure of the major capsid protein in both the precursor and the mature states of the surface lattice. This transformation involves major changes in the physical, chemical, and immunological properties of the capsid and is preceded in vivo by processing of its major protein, gp23 (56 kDa), to gp23* (49 kDa), by proteolysis of its N-terminal gp23-delta domain. The respective secondary structures of gp23 in the unexpanded state, and of gp23* in the expanded state, were determined from the laser Raman spectra of polyheads, tubular polymorphic variants of the capsid. Similar measurements were also made on uncleaved polyheads that had been expanded in vitro and, for reference, on thermally denatured polyheads. We find that, with or without cleavage of gp23, expansion is accompanied by substantial changes in secondary structure, involving a major reduction in alpha-helix content and an increase in beta-sheet. The beta-sheet contents of gp23* or gp23 in the expanded state of the surface lattice, and even of gp23 in the unexpanded state, are sufficient for a domain with the "jellyroll" fold of antiparallel beta-sheets, previously detected in the capsid proteins of other icosahedral viruses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Four models for head length regulation in bacteriophage T4 are described and discussed. Several length mutants in the major capsid protein gene (23) were studied by sucrose gradient analysis, rotating gel analysis of DNA length, and by mixed infection gene dosage experiments with T4 amber mutants in gene 24. The results show that head length variation is quantized and highly specific, in that certain amino acid changes in gp23 results in reproducible and well-defined head length phenotypes. These data are presented as being most consistent with a vernier-type of head length control mechanism.  相似文献   

14.
The shell of the bacteriophage T4 prehead is transformed after the maturation cleavages from a fragile to a highly chemically resistant structure. A “cleaved but anchored” shell, in which the capsid protein has been cleaved but expansion to the mature structure has not yet occurred, is thought to be an intermediate in the transformation. We have compared native, trypsinized, temperature-sensitive mutant, and cleaved but anchored polyheads for differences and similarities in their capsomeres. Our results show that the altered capsomeres of the cleaved but anchored state must be attributed to a conformational change in the subunits, and not simply to the loss of the amino-terminal peptide by proteolysis.  相似文献   

15.
It has previously been shown that T4 bacteriophage-coded dihydrofolate reductase is a capsid protein, specifically an element of the tail plate. This paper presents evidence that thymidylate synthetase is also a structural protein. Antiserum prepared against purified T4 thymidylate synthetase neutralizes T4 infectivity. Evidence is presented that structural thymidylate synthetase is the target of the antiphage component of the serum.The td gene in T4 codes for thymidylate synthetase. We have crossed the td gene from phage T6 into T4 and eliminated other T6 genetic material from the hybrid phage by extensive backcrossing. The hybrid phage, T4tdT6, is inactivated at 60 °C significantly more rapidly than the parent phage, T4D. Thus, the td gene is a determinant of a physical property of the virion, providing direct confirmation that thymidylate synthetase is a capsid protein. At present the role of the virion-bound enzyme is unknown.  相似文献   

16.
The ability of phage lambda to complement the growth of T1am23, a T1 gene 4 mutant with a DNA arrest phenotype, has been shown to require both lambda Red functions, redX and redB. lambdagam function, however, is not required. Therefore, the lambda Red function can substitute for T1 gene 4 function. However, T1+ does not substitute for lambda Red in allowing lambda to grow in a polA host.  相似文献   

17.
The HK97 bacteriophage capsid is a unique example of macromolecular catenanes: interlocked rings of covalently attached protein subunits. The chain mail organization of the subunits stabilizes a particle in which the maximum thickness of the protein shell is 18A and the maximum diameter is 550A. The electron density has the appearance of a balloon illustrating the extraordinary strength conferred by the unique subunit organization. The refined structure shows novel qualities of the HK97 shell protein, gp5 that, together with the protease gp4, guides the assembly and maturation of the virion. Although gp5 forms hexamers and pentamers and the subunits exist in different structural environments, the tertiary structures of the seven protein molecules in the viral asymmetric unit are closely similar. The interactions of the subunits in the shell are exceptionally complex with each subunit interacting with nine other subunits. The interactions of the N-terminus released after gp5 cleavage appear important for organization of the loops that become crosslinked to the core of a neighboring subunit at the maturation. A comparison with a model of the Prohead II structure revealed that the surfaces of non-covalent contact between the monomers that build up hexamers/pentamers are completely redefined during maturation.  相似文献   

18.
Full-length cDNA of the VP4 gene of porcine rotavirus strain OSU was cloned into adenovirus type 5 (Ad5) downstream of the E3 promoter. The plaque-purified recombinant (Ad5-OSU VP4) expressed apparently authentic VP4 rotavirus outer capsid protein. The protein had the same molecular size (85 kDa) and electrophoretic mobility as did native OSU VP4 and was immunoprecipitated by a polyclonal antiserum raised to OSU VP4. Cotton rats that possessed prechallenge rotavirus antibodies that may have been acquired either passively or actively developed neutralizing antibodies against the OSU strain following intranasal administration of the live Ad5-OSU VP4 recombinant. The neutralizing activity was enhanced by a parenteral booster injection with baculovirus-expressed OSU VP4 antigen. In addition, a high titer of neutralizing antibodies was induced by parenteral administration of the latter antigen and subsequent intranasal administration of the Ad5-OSU VP4 recombinant. These observations indicate that the VP4 outer capsid protein of a rotavirus strain can be expressed by a recombinant adenovirus vector. This approach warrants further exploration for immunization against rotavirus disease.  相似文献   

19.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

20.
T7+ phage are unable to plate on a strain of Shigella sonnei D2 371-48. Spontaneous phage mutants arise (ss--mutants) that are able to plate on this strain of Shigella. We have shown by complementation studies and genetic crosses that the ss--mutation maps in gene 10, the structural gene for the major protein of the capsid. This finding implies that the gene 10 protein may interact with a host protein during phage development and that the abortive infection of T7 observed in S. sonnei D2 371-48 with T7+ phage may be a defect in head morphogenesis. Our studies also reveal that various T7 strains commonly contain deletions in nonessential regions. T7 ss--mutants selected after growth of T7+ on Shigella D2 371-48 often acquire a deletion in the 0.7 gene that is not necessary for the ss--phenotype. Finally, we have found a new nonessential region of the T7 chromosome that is located between 33 and 35.5% of the T7 genome length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号