首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《BBA》2006,1757(9-10):1162-1170
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral “stator stalk”, which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2δ; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit δ (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.  相似文献   

2.
Bueler SA  Rubinstein JL 《Biochemistry》2008,47(45):11804-11810
ATP synthase from Saccharomyces cerevisiae is an approximately 600 kDa membrane protein complex. The enzyme couples the proton motive force across the mitochondrial inner membrane to the synthesis of ATP from ADP and inorganic phosphate. The peripheral stalk subcomplex acts as a stator, preventing the rotation of the soluble F 1 region relative to the membrane-bound F O region during ATP synthesis. Component subunits of the peripheral stalk are Atp5p (OSCP), Atp4p (subunit b), Atp7p (subunit d), and Atp14p (subunit h). X-ray crystallography has defined the structure of a large fragment of the bovine peripheral stalk, including 75% of subunit d (residues 3-123). Docking the peripheral stalk structure into a cryo-EM map of intact yeast ATP synthase showed that residue 123 of subunit d lies close to the bottom edge of F 1. The 37 missing C-terminal residues are predicted to either fold back toward the apex of F 1 or extend toward the membrane. To locate the C terminus of subunit d within the peripheral stalk of ATP synthase from S. cerevisiae, a biotinylation signal was fused to the protein. The biotin acceptor domain became biotinylated in vivo and was subsequently labeled with avidin in vitro. Electron microscopy of the avidin-labeled complex showed the label tethered close to the membrane surface. We propose that the C-terminal region of subunit d spans the gap from F 1 to F O, reinforcing this section of the peripheral stalk.  相似文献   

3.
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).  相似文献   

4.
Subunit h, a 92-residue-long, hydrophilic, acidic protein, is a component of the yeast mitochondrial F1Fo ATP synthase. This subunit, homologous to the mammalian factor F6, is essential for the correct assembly and/or functioning of this enzyme since yeast cells lacking it are not able to grow on nonfermentable carbon sources. Chemical cross-links between subunit h and subunit 4 have previously been shown, suggesting that subunit h is a component of the peripheral stalk of the F1Fo ATP synthase. The construction of cysteine-containing subunit h mutants and the use of bismaleimide reagents provided insights into its environment. Cross-links were obtained between subunit h and subunits alpha, f, d, and 4. These results and secondary structure predictions allowed us to build a structural model and to propose that this subunit occupies a central place in the peripheral stalk between the F1 sector and the membrane. In addition, subunit h was found to have a stoichiometry of one in the F1Fo ATP synthase complex and to be in close proximity to another subunit h belonging to another F1Fo ATP synthase in the inner mitochondrial membrane. Finally, functional characterization of mitochondria from mutants expressing different C-terminal shortened subunit h suggested that its C-terminal part is not essential for the assembly of a functional F1Fo ATP synthase.  相似文献   

5.
Two stalks link the F(1) and F(0) sectors of ATP synthase. The central stalk contains the gamma and epsilon subunits and is thought to function in rotational catalysis as a rotor driving conformational changes in the catalytic alpha(3)beta(3) complex. The two b subunits and the delta subunit associate to form b(2)delta, a second, peripheral stalk extending from the membrane up the side of alpha(3)beta(3) and binding to the N-terminal regions of the alpha subunits, which are approx. 125 A from the membrane. This second stalk is essential for binding F(1) to F(0) and is believed to function as a stator during rotational catalysis. In vitro, b(2)delta is a highly extended complex held together by weak interactions. Recent work has identified the domains of b which are essential for dimerization and for interaction with delta. Disulphide cross-linking studies imply that the second stalk is a permanent structure which remains associated with one alpha subunit or alphabeta pair. However, the weak interactions between the polypeptides in b(2)delta pose a challenge for the proposed stator function.  相似文献   

6.
The peripheral stalk of the mitochondrial ATP synthase   总被引:9,自引:0,他引:9  
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.  相似文献   

7.
In F1F0-ATP synthase, the subunit b2delta complex comprises the peripheral stator bound to subunit a in F0 and to the alpha3beta3 hexamer of F1. During catalysis, ATP turnover is coupled via an elastic rotary mechanism to proton translocation. Thus, the stator has to withstand the generated rotor torque, which implies tight interactions of the stator and rotor subunits. To quantitatively characterize the contribution of the F0 subunits to the binding of F1 within the assembled holoenzyme, the isolated subunit b dimer, ab2 subcomplex, and fully assembled F0 complex were specifically labeled with tetramethylrhodamine-5-maleimide at bCys64 and functionally reconstituted into liposomes. Proteoliposomes were then titrated with increasing amounts of Cy5-maleimide-labeled F1 (at gammaCys106 and analyzed by single-molecule fluorescence resonance energy transfer. The data revealed F1 dissociation constants of 2.7 nm for the binding of F0 and 9-10 nm for both the ab2 subcomplex and subunit b dimer. This indicates that both rotor and stator components of F0 contribute to F1 binding affinity in the assembled holoenzyme. The subunit c ring plays a crucial role in the binding of F1 to F0, whereas subunit a does not contribute significantly.  相似文献   

8.
Novel features in the structure of bovine ATP synthase.   总被引:4,自引:0,他引:4  
The F1F0-ATP synthase from bovine heart mitochondria catalyses the synthesis of ATP from ADP and inorganic phosphate by using the energy of an electrochemical proton gradient derived from electron transport. The enzyme consists of three major domains: the globular F1catalytic domain of known atomic structure lies outside the lipid bilayer and is attached by a central stalk to the intrinsic membrane domain, F0, which transports protons through the membrane. Proton transport through F0evokes structural changes that are probably transmitted by rotation of the stalk to the catalytic sites in F1. In an alpha3beta3gamma1subcomplex, the rotation of the central gamma subunit driven by ATP hydrolysis has been visualised by optical microscopy. In order to prevent the alpha3beta3structure from following the rotation of the central gamma subunit, it has been proposed that the enzyme might have a stator connecting static parts in F0to alpha3beta3,thereby keeping it fixed relative to the rotating parts. Here we present electron microscopy images that reveal three new features in bovine F1F0-ATPase, one of which could be a stator. The second feature is a collar structure above the membrane domain and the third feature is some additional density on top of the F1domain.  相似文献   

9.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

10.
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.  相似文献   

11.
Peng G  Bostina M  Radermacher M  Rais I  Karas M  Michel H 《FEBS letters》2006,580(25):5934-5940
The F(1)F(0) ATP synthase has been purified from the hyperthermophilic eubacterium Aquifex aeolicus and characterized. Its subunits have been identified by MALDI-mass spectrometry through peptide mass fingerprinting and MS/MS. It contains the canonical subunits alpha, beta, gamma, delta and epsilon of F(1) and subunits a and c of F(0). Two versions of the b subunit were found, which show a low sequence homology to each other. Most likely they form a heterodimer. An electron microscopic single particle analysis revealed clear structural details, including two stalks connecting F(1) and F(0). In several orientations the central stalk appears to be tilted and/or kinked. It is unclear whether there is a direct connection between the peripheral stalk and the delta subunit.  相似文献   

12.
ATP synthases (F(0)F(1)-ATPases) mechanically couple ion flow through the membrane-intrinsic portion, F(0), to ATP synthesis within the peripheral portion, F(1). The coupling most probably occurs through the rotation of a central rotor (subunits c(10)epsilon gamma) relative to the stator (subunits ab(2)delta(alpha beta)(3)). The translocation of protons is conceived to involve the rotation of the ring of c subunits (the c oligomer) containing the essential acidic residue cD61 against subunits ab(2). In line with this notion, the mutants cD61N and cD61G have been previously reported to lack proton translocation. However, it has been surprising that the membrane-bound mutated holoenzyme hydrolyzed ATP but without translocating protons. Using detergent-solubilized and immobilized EF(0)F(1) and by application of the microvideographic assay for rotation, we found that the c oligomer, which carried a fluorescent actin filament, rotates in the presence of ATP in the mutant cD61N just as in the wild type enzyme. This observation excluded slippage among subunit gamma, the central rotary shaft, and the c oligomer and suggested free rotation without proton pumping between the oligomer and subunit a in the membrane-bound enzyme.  相似文献   

13.
Subunit h is a component of the peripheral stalk region of ATP synthase from Saccharomyces cerevisiae. It is weakly homologous to subunit F6 in the bovine enzyme, and F6 can replace the function of subunit h in a yeast strain from which the gene for subunit h has been deleted. The removal of subunit h (or F6) uncouples ATP synthesis from the proton motive force. A biotinylation signal has been introduced following the C terminus of subunit h. It becomes biotinylated in vivo, and allows avidin to be bound quantitatively to the purified enzyme complex in vitro. By electron microscopy of the ATP synthase-avidin complex in negative stain and by subsequent image analysis, the C terminus of subunit h has been located in a region of the peripheral stalk that is close to the Fo membrane domain of ATP synthase. Models of the peripheral stalk are proposed that are consistent with this location and with reconstitution experiments conducted with isolated peripheral stalk subunits.  相似文献   

14.
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.  相似文献   

15.
ATP synthase catalyses the formation of ATP from ADP and P(i) and is powered by the diffusion of protons throughout membranes down the proton electrochemical gradient. The protein consists of a water-soluble F(1) and a transmembrane F(0) proton transporter part. It was previously shown that the ring of membrane subunits rotates past a fixed subunit during catalytic cycle of the enzyme. However, many parameters of this movement are still unknown. In the present study the mutual protein movement in the membrane part of F(0)F(1)-ATP syntase has been analysed within the framework of rigid body mechanics. On the base of available experimental data it was shown that electrostatic interaction of two charged amino acids residues is able to supply quite enough energy for the rotation. The initial torque, which caused the rotation, was estimated as 3.7 pN nm and for this pattern the angular movement of c subunits complex could not physically have a period less than 10(-9)s. If membrane viscosity and elastic resistance were taken into account then the time of a whole turnover could rise up to 6.3 x 10(-3)s. It is remarkable that rotation will take place only under condition when the elasticity (Young's) module of the central stalk (gamma subunit and other minor subunits) is less than 5.0 x 10(7)N/m(2). Thus, for generally accepted structural parameters of ATP synthase, two-charge electrostatic interaction model does not permit rotation of the rotor if elastic properties of the central stalk are tougher than mentioned above. In order to explain the rotation under that condition one should either suppose a shorter distance between subunit a and c subunits complex or assume interaction of more than two charged amino acids residues.  相似文献   

16.
A stator is proposed as necessary to prevent futile rotation of the F(1) catalytic sector of mitochondrial ATP synthase (mtATPase) during periods of ATP synthesis or ATP hydrolysis. Although the second stalk of mtATPase is generally believed to fulfil the role of a stator capable of withstanding the stress produced by rotation of the central rotor, there is little evidence to directly support this view. We show that interaction between two candidate proteins of the second stalk, OSCP and subunit b, fused at their C-termini to GFP variants and assembled into functional mtATPase can be monitored in mitochondria using fluorescence resonance energy transfer (FRET). Substitution of native OSCP with a variant containing a glycine 166 to asparagine (G166N) substitution yielded a metastable complex. In contrast to the enzyme containing native OSCP, FRET could be irreversibly lowered for the enzyme containing G166N at a rate that correlated closely with the rate of enzyme activity (ATP hydrolysis). The non-hydrolysable ATP analogue, AMP-PCP did not have this effect. We conclude that two candidate proteins of the stator stalk, OSCP and b, are subject to stresses during enzyme catalytic activity commensurate with their role as a part of a stator stalk.  相似文献   

17.
McLachlin DT  Dunn SD 《Biochemistry》2000,39(12):3486-3490
The ATP synthase of Escherichia coli is believed to act through a rotational mechanism in which the b(2)delta subcomplex holds the alphabeta hexamer stationary relative to the rotating gamma and epsilon subunits. We have engineered a disulfide bond between cysteines introduced at position 158 of the delta subunit and at a position just beyond the normal C-terminus of the b subunit. The formation of this disulfide bond verifies that the C-terminal region of b is proximal to residue 158 of delta. The disulfide bond does not affect the ability of the F(1)F(0) complex to hydrolyze ATP, couple ATP hydrolysis to the establishment of a proton gradient, or maintain a proton gradient generated by the electron transport chain. These results are consistent with a permanent association of b(2) with delta as suggested by the rotational model of enzyme function.  相似文献   

18.
Respiration in all cells depends upon synthesis of ATP by the ATP synthase complex, a rotary motor enzyme. The structure of the catalytic moiety of ATP synthase, the so-called F(1) headpiece, is well established. F(1) is connected to the membrane-bound and ion translocating F(0) subcomplex by a central stalk. A peripheral stalk, or stator, prevents futile rotation of the headpiece during catalysis. Although the enzyme functions as a monomer, several lines of evidence have recently suggested that monomeric ATP synthase complexes might interact to form a dimeric supercomplex in mitochondria. However, due to its fragility, the structure of ATP synthase dimers has so far not been precisely defined for any organism. Here we report the purification of a stable dimeric ATP synthase supercomplex, using mitochondria of the alga Polytomella. Structural analysis by electron microscopy and single particle analysis revealed that dimer formation is based on specific interaction of the F(0) parts, not the F(1) headpieces which are not at all in close proximity. Remarkably, the angle between the two F(0) part is about 70 degrees, which induces a strong local bending of the membrane. Hence, the function of ATP synthase dimerisation is to control the unique architecture of the mitochondrial inner membrane.  相似文献   

19.
ATP synthases convert an electrochemical proton gradient into rotational movement to produce the ubiquitous energy currency adenosine triphosphate. Tension generated by the rotational torque is compensated by the stator. For this task, a peripheral stalk flexibly fixes the hydrophilic catalytic part F1 to the membrane integral proton conducting part F(O) of the ATP synthase. While in eubacteria a homodimer of b subunits forms the peripheral stalk, plant chloroplasts and cyanobacteria possess a heterodimer of subunits I and II. To better understand the functional and structural consequences of this unique feature of photosynthetic ATP synthases, a procedure was developed to purify subunit I from spinach chloroplasts. The secondary structure of subunit I, which is not homologous to bacterial b subunits, was compared to heterologously expressed subunit II using CD and FTIR spectroscopy. The content of alpha-helix was determined by CD spectroscopy to 67% for subunit I and 41% for subunit II. In addition, bioinformatics was applied to predict the secondary structure of the two subunits and the location of the putative coiled-coil dimerization regions. Three helical domains were predicted for subunit I and only two uninterrupted domains for the shorter subunit II. The predicted length of coiled-coil regions varied between different species and between subunits I and II.  相似文献   

20.
In ATP synthase (F(O)F(1)-ATPase) ion flow through the membrane-intrinsic portion, F(O), drives the central "rotor", subunits c(10)epsilongamma, relative to the "stator" ab(2)delta(alphabeta)(3). This converts ADP and P(i) into ATP. Vice versa, ATP hydrolysis drives the rotation backwards. Covalent cross-links between rotor and stator subunits have been shown to inhibit these activities. Aiming at the rotary compliance of subunit gamma we introduced disulfide bridges between gamma (rotor) and alpha or beta (stator). We engineered cysteine residues into positions located roughly at the "top," "center," and "bottom" parts of the coiled-coil portion of gamma and suitable residues on alpha or beta. This part of gamma is located at the center of the (alphabeta)(3) domain with its C-terminal part at the top of F(1) and the bottom part close to the F(O) complex. Disulfide bridge formation under oxidizing conditions was quantitative as shown by SDS-polyacrylamide gel electrophoresis and immunoblotting. As expected both the ATPase activities and the yield of rotating subunits gamma dropped to zero when the cross-link was formed at the center (gammaL262C <--> alphaA334C) and bottom (gammaCys(87) <--> betaD380C) positions. But much to our surprise disulfide bridging impaired neither ATP hydrolysis activity nor the full rotation of gamma and the enzyme-generated torque of oxidized F(1), which had been engineered at the top position (gammaA285C <--> alphaP280C). Apparently the high torque of this rotary engine uncoiled the alpha-helix and forced amino acids at the C-terminal portion of gamma into full rotation around their dihedral (Ramachandran) angles. This conclusion was supported by molecular dynamics simulations: If gammaCys(285)-Val(286) are attached covalently to (alphabeta)(3) and gammaAla(1)-Ser(281) is forced to rotate, gammaGly(282)-Ala(284) can serve as cardan shaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号