首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At low temperature and low salt concentration, both imino proton and 31p-nmr spectra of DNA complexes with the intercalators ethidium and propidium are in the slow-exchange region. Increasing temperature and/or increasing salt concentration results in an increase in the site exchange rate. Ring-current effects from the intercalated phenanthridinium ring of ethidium and propidium cause upfield shifts of the imino protons of A · T and G · C base pairs, which are quite similar for the two intercalators. The limiting induced chemical shifts for propidium and ethidium at saturation of DNA binding sites are approximately 0.9 ppm for A · T and 1.1 ppm for G · C base pairs. The similarity of the shifts for ethidium and propidium, in both the slow- and fast-exchange regions over the entire titration of DNA, shows that a binding model for propidium with neighbor-exclusion binding and negative ligand cooperativity is correct. The fact that a unique chemical shift is obtained for imino protons at intercalated sites over the entire titration and that no unshifted imino proton peaks remain at saturation binding of ethidium and propidium supports a neighbor-exclusion binding model with intercalators bound at alternating sites rather than in clusters on the double helix. Addition of ethidium and propidium to DNA results in downfield shifts in 31P-nmr spectra. At saturation ratios of intercalator to DNA base pairs in the titration, a downfield shoulder (approximately ?2.7 ppm) is apparent, which accounts for approximately 15% of the spectral area. The main peak is at ?3.9 to ?4.0 ppm relative to ?4.35 in uncomplexed DNA. The simplest neighbor-binding model predicts a downfield peak with approximately 50% of the spectral area and an upfield peak, near the chemical shift for uncomplexed DNA, with 50% of the area. This is definitely not the case with these intercalators. The observed chemical shifts and areas for the DNA complexes can be explained by models, for example, that involve spreading the intercalation-induced unwinding of the double helix over several base pairs and/or a DNA sequence- and conformation-dependent heterogeneity in intercalation-induced chemical shifts and resulting exchange rates.  相似文献   

2.
Imino proton and 31P NMR studies were conducted on the binding of actinomycin D (ActD) to self-complementary oligodeoxyribonucleotides with one GC binding site [d(ATATGCATAT) (1), d-(ATACGCGTAT) (2), and d(ATATACGCGTATAT) (3)] and with two GC sites [d(ATGCATGCAT) (4)]. At R = 1 (molar ratio of ActD to oligomer duplex) ActD caused a doubling of the number of imino proton signals at, and adjacent to, the GC binding site of 1. One of the G.C base pair signals shifted upfield while the other shifted downfield. Both of the signals for the A.T base pairs adjacent to the binding site shifted downfield. All imino proton signals of 2 and the longer sequence, 3, shifted upfield on binding of ActD to the GC site, indicating a sequence-dependent change in base stacking on complex formation. For both 1 and 2 addition of ActD resulted in a similar pattern of three downfield 31P NMR signals. The two most downfield signals have chemical shift and temperature dependence which are characteristic of phosphate groups at isolated intercalation sites. At R = 1 the ActD complex with 4 has very complex spectra with both upfield and downfield A.T and G.C imino signals. All these data were consistent with two 1:1 complexes with the unsymmetrical phenoxazone ring adopting both of the two possible orientations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D G Gorenstein  K Lai 《Biochemistry》1989,28(7):2804-2812
31P NMR provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the intercalating drugs ethidium, quinacrine, and daunomycin to sonicated poly(A).poly(U) and calf thymus DNA. 31P chemical shifts can also be used to assess differences in the duplex unwinding angles in the presence of the drug. Thus a new 31P signal, 1.8-2.2 ppm downfield from the double-stranded helix signals, is observed in the ethidium ion-poly(A).poly(U) complex. This signal arises from phosphates which are in perturbed environments due to intercalation of the drug. This is in keeping with the hypothesis that the P-O ester torsional angle in phosphates linking the intercalated base pairs is more trans-like. Similar though smaller deshielding of the 31P signals is observed in sonicated poly(A).poly(U)-quinacrine complexes as well as in the daunomycin complexes. The effect of added ethidium ion, quinacrine, and daunomycin on the 31P spectra of sonicated calf thymus DNA is consistent with Wilson and Jones' (1982) earlier study. In these drug-DNA complexes the drug produces a gradual downfield shift in the DNA 31P signal without the appearance of a separate downfield peak. These differences are attributed to differences in the rate of chemical exchange of the drug between free and bound duplex states. The previous correlation of 31P chemical shift with drug duplex unwinding angle (Wilson & Jones, 1982) is confirmed for both the RNA and DNA duplexes.  相似文献   

4.
31P NMR spectra of excised rat brain showed a broad resonance between-12 and -13 ppm. Subcellular fractions of brain, rich in membranes, exhibited the broad resonance and it was also present in isolated myelin, the major membrane component of brain. However, it was absent in brain cytosol (161,100 X g supernatant). Raising the temperature of the brain above 50 degrees C caused a gradual downfield chemical shift of the broad resonance, to about -1 ppm at 90 degrees C. An even larger downfield shift was produced by halothane or deoxycholate with concomitant narrowing of the line width of this resonance. Vesicles prepared from the phospholipids of excised brain or isolated myelin showed the broad resonance, and halothane produced the same downfield shift and peak sharpening in brain phospholipid vesicles as that in the intact brain. The chemical shift anisotropy was estimated to be 45 ppm for both myelin and the brain, as characteristic for biological membranes. The T1 and T2 relaxation times of the perpendicular 31P chemical shift tensor component of the broad resonance were 0.66 sec and 1.6 msec, respectively, in the same range as those for other biological membranes. Halothane-treatment of the brain increased both the T1 and T2 times considerably, as expected from the disruption of the phospholipid bilayer in a membrane. These data indicate that the broad resonance in the 31P NMR spectrum of excised rat brain originates exclusively from the phosphate head group of membrane bound phospholipids. Similar broad resonances were found in autopsied human brain and porcine spinal cord and to a lesser extent in excised rat liver and kidney.  相似文献   

5.
The temperature dependence to the 31P NMR spectra of poly[d(GC)] . poly [d(GC)],d(GC)4, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The 31P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and "Z" helix. The increasing downfield shift with temperature of the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A separate upfield peak (20-60% of the total phosphates) is observed at lower temperatures in the oligo(U) . poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The 31P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation.  相似文献   

6.
31P NMR studies of 140 base pair DNA fragments in nucleosomes and free in solution show no detectable change in the internucleotide 31P chemical shift or linewidth when DNA is packaged into nucleosomes. Measurements of 31P spin-lattice relaxation times T1 and 31P-[H] nuclear Overhauser enhancements revealed internal motion with a correlation time of about 4 x 10(-10) sec in double helical DNA, both free in solution and bound to nucleosomal core proteins. This result implies greater dynamic mobility in double helical DNA than has previously been supposed.  相似文献   

7.
The temperature dependence of the 31P NMR spectra of the ethidium complexes with poly(A) X oligo(U) and the 31P spectra of phenylalanine tRNA (yeast) in various molar ratios of ethidium ion (Et) are presented. In the poly(A) X oligo(U) X Et complex, a new peak about 2.0 ppm downfield from the double-helix peak appears. We have assigned this peak to phosphates perturbed by ethidium. The chemical shift of this peak is consistent with the intercalation mode of binding and provides additional support for our hypothesis that 31P shifts are sensitive probes of phosphate ester conformations. The main effect of ethidium on the 31P spectra of tRNAPhe is the broadening of several of the scattered signals. These scattered signals are associated with phosphates involved in tertiary interactions. We propose that these broadened signals arise from phosphates near the Et binding site.  相似文献   

8.
31P and 15N chemical shifts and 31P-15N bond lengths have been measured with solid-state NMR techniques in two inhibitors of thermolysin, carbobenzoxy-Glyp-L-Leu-L-Ala (ZGpLA) and carbobenzoxy-L-Phep-L-Leu-L-Ala (ZFpLA), both as free lithium salts and when bound to the enzyme. Binding of both inhibitors to thermolysin results in large changes in the 31P chemical shifts. These changes are more dramatic for the tighter binding inhibitor ZFpLA, where a approximately 20 ppm downfield movement of the 31P isotropic chemical shift (sigma iso) is observed. This shift is due to changes in the shift tensor elements sigma 11 and sigma 22, while sigma 33 remains essentially constant. We observed a similar pattern for ZGpLA, but only a approximately 5 ppm change occurs in sigma iso. The changes in the 15N chemical shifts for both inhibitors are small upon binding, amounting to downfield shifts of 2 and 4 ppm for ZGpLA and ZFpLA, respectively. This indicates that there are no changes in the protonation state of the 15N in either the ZFpLA- or the ZGpLA-thermolysin complex. NMR distance measurements yield a P-N bond length rP-N = 1.68 +/- 0.03 A for the tight binding inhibitor ZFpLA both in its free lithium salt form and in its thermolysin-ZFpLA complex, a distance that is much shorter than the 1.90-A distance reported by X-ray crystallography studies [Holden et al. (1987) Biochemistry 26, 8542-8553].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
P J Cozzone  O Jardetzky 《Biochemistry》1976,15(22):4853-4859
A phosphorus-31 nuclear magnetic resonance (NMR) study of adenine, uracil, and thymine mononucleotides, their cyclic analogues, and the corresponding dinucleotides is reported. From the pH dependence of phosphate chemical shifts, pKa values of 6.25-6.30 are found for all 5'-mononucleotides secondary phosphate ionization, independently from the nature of the base and the presence of a hydroxyl group at the 2' position. Conversely, substitution of a hydrogen atom for a 2'-OH lowers the pKa of 3'-monoribonucleotides from 6.25 down to 5.71-5.85. This indication of a strong influence of the 2'-hydroxyl group on the 3'-phosphate is confirmed by the existence of a 0.4 to 0.5 ppm downfield shift induced by the 2'-OH on the phosphate resonance of 3'-monoribonucleotides, and 3',5'-cyclic nucleotides and dinucleotides with respect to the deoxyribosyl analogues. Phosphate chemical shifts and titration curves are affected by the ionization and the type of the base. Typically, deviations from the theoretical Henderson-Hasselbalch plots are observed upon base titration. In addition, purine displays a more deshielding influence than pyrimidine on the phosphate groups of most of the mononucleotides (0.10 to 0.25 ppm downfield shift) with a reverse situation for dinucleotides. These effects together with the importance of stereochemical arrangement (furanose ring pucker, furanose-phosphate backbone conformation, O-P-O bond angle) on the phosphate chemical shifts are discussed.  相似文献   

10.
31P-nuclear magnetic resonance and absorption spectra of cytosolic chicken aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) have been recorded in the pH range from 5 to 8.5. The 31P chemical shift was found to be pH-dependent with a pK of 6.85; the chemical shift change was 0.35 ppm. The pK value found by spectrophotometric titration of the enzyme proved to be about 6.0. The monoanion-dianion transition of the 5'-phosphate group of a model Schiff base of pyridoxal phosphate with 2-aminobutanol in methanol is accompanied by a change in the 31P chemical shift of 5.2 ppm. It is inferred that the phosphate group of the protein-bound coenzyme is in a dianionic form throughout the investigated pH range; the pH-dependence of the 31P chemical shift may be due to a conformational change at the active site. In the presence of 100 mM succinate, 6 mM aminooxyacetate or 25 mM cycloserine, the 31P chemical shift is insensitive to pH variations.  相似文献   

11.
Generation of diastereomeric phosphonate ester adducts of chymotrypsin was evidenced for the first time by 31P NMR and spectrophotometric kinetic measurements. 31P NMR signals were recorded for 4-nitrophenyl 2-propyl methylphosphonate (IMN) at 32.2 ppm and for its hydrolysis product at 26.3 ppm downfield from phosphoric acid. The inhibition of α-chymotrypsin at pH > 8.0 by the faster reacting enantiomer of IMN or 2-propyl methylphosphonochloridate (IMCl), or other phosphonate ester analogs of these compounds, all caused a ~6.0 ppm downfield shift of the 31P signal to the 39–40 ppm region. IMN, when applied below the stoichiometric amount of chymotrypsin, under the same conditions, generated two signals, at 39.0 and at 37.4 ppm. Scans accumulated in hourly intervals showed the decomposition of both diastereomers, with approximate half-lives of 12 h at pH 8.0 and 22°C, into a species with a resonance at 35.5 ppm. The most likely reaction to account for the appearance of this new peak is the enzymic dealkylation of the isopropyl group from the covalently bound phosphonate ester. We base this conclusion mostly on the similarity of the upfield shift to the hydrolysis of phosphonate esters. Contrary to experience with phosphate ester adducts of serine proteases, no signal was detected higher than 25.0 ppm downfield from phosphoric acid for several phosphonate ester adducts of chymotrypsin and in no case did the resonance for the adduct shift further downfield in the course of the experiments. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Four titrating histidine ring C2 and C4 proton resonances are observed in 220 MHz proton NMR spectra of human metmyoglobin as a function of pH. Values of ionization constants determined from the NMR titration data using an equation describing a simple proton association-dissociation equilibrium are curves (1) 6.6, (2) 7.0, (3) 5.8, and (4) 7.4. Four histidine residues have also been found to be solvent-accessible in human metmyoglobin by carboxymethylation studies (Harris, C.M., and Hill, R.L. (1969) J. Biol. Chem. 244, 2195-2203). Two of the titration curves (3 and 4) deviate significantly from the chemical shift values normally observed for histidine C2 proton resonances. Curve 3, with a low pKa, is shifted downfield at high values of pH and also exhibits a second minor inflection with a pKa value of 8.8. On the other hand, the high pKa curve, 4, is shifted upfield at all values of pH. The characteristics of the NMR titration curves with the lowest and highest pKa values (3 and4) are very similar to curves observed previously with sperm whale and horse metmyoglobins (Cohen, J.S., Hagenmaier, H., Pollard, H., and Schechter, A.N. (1972) J. Mol. Biol. 71, 513-519). These results indicate that the histidine residues from which these curves are derived have unusual and characteristic environments in this series of homologous proteins. The NMR spectra of all three metmyoglobins are changed extensively as a result of azide ion binding, indicating conformational changes affecting the environments of several imidazole side chains. The presence of azide ion causes a selective downfield chemical shift for the low pKa curve and a selective upfield chemical shift for the high pKa curve in all three proteins. Azide also abolishes the second inflection seen in the low pKa curve at high pH. In addition to these effects, the presence of azide ion permits the observation of two additional titrating proton resonances for all three metmyoglobins. Increasing the azide to protein ratio at several fixed values of pH yields results which show that a slow exchange process is occurring with each of the metmyoglobins. In the azide titration studies the maximum changes in the NMR spectra occurred at approximately equimolar concentrations. The NMR results for these proteins in the absence and presence of azide ion are related to x-ray crystallographic studies of sperm whale metmyoglobin and the known alkylation properties of the histidine residues. Tentative assignments of the titrating resonances observed are suggested.  相似文献   

13.
31P nuclear magnetic resonance spectra recorded from intact muophosphate, and the sugar phosphates. Quantitation of these metabolites by 31P nuclear magnetic resonance was in good agreement with values obtained by chemical analyses. The spectra obtained from various muscles showed considerable variation in their phosphorus profile. Thus, differences could be detected between (a) normal and diseased muscle; (b) vertebrates and invertebrates; (c) different species of the same animal. The time course of change in phosphate metabolites in frog muscle showed that ATP level remains unchanged until phosphocreatine is nearly depleted. Comparative studies revealed that under anaerobic conditions the Northern frog maintains its ATP content for 7 hours, while other types of amphibian, bird, and mammalian muscles begin to show an appreciable decay in ATP after 2 hours. Several lines of evidence indicated that ATP forms a complex with magnesium in the muscle water: (a) the phosphate resonances of ATP in the muscle were shifted downfield as compared to those in the alkaline earth metal-free perchloric acid extract of the muscle; (b) the coupling constants of ATP measured in various live muscles closely corresponded to those for MgATP in a solution resembling the composition of the muscle water; (c) in the muscle the gamma-phosphate group of ATP exhibited no shift change over a period of 10 hours under conditions where resonances of other phosphate compounds could be titrated. This behavior is similar to that of MgATP in model solutions in the physiological pH range, and it is different from that of CaATP. The chemical shifts of the phosphate metabolites were determined in several relevant solutions as a function of pH. Under all conditions only inorganic orthophosphate showed an invariant titration curve. From the chemical shift of inorganic phosphate observed during aging of intact muscle the intracellular pH of frog muscle was estimated to be 7.2.  相似文献   

14.
31P NMR was used to study the specific interaction of an oligodeoxynucleotide containing four thymines and covalently attached to an acridine derivative through its 3'-phosphate [(Tp)4(CH2)5Acr] with a complementary oligoribonucleotide (Ap)3A. 31P-1H and 1H-1H chemical shift correlation spectroscopies were jointly used to provide the assignment of the phosphorus resonances. A downfield shift of two phosphorus resonances of (Tp)4(CH2)5Acr and of two phosphorus resonances of (Ap)3A was observed upon complex formation. The assignment of the phosphorus resonances which are downfield shifted allowed us to propose a model involving an equilibrium between several 1:1 complexes where the acridine ring is intercalated between different A.T base pairs.  相似文献   

15.
The two adjacent active site histidine residues of bovine pancreatic ribonuclease A (histidine-12 and -119) yield proton magnetic resonance titration curves having Hill coefficients significantly less than unity (0.7 and 0.8, respectively). Three models postulating interactions with other titrating groups in the molecule have been used to approximate these anomalous experimental titration curves. Very good agreement with the data was obtained with models postulating mutual electrostatic interaction between histidine-12 and -119. The additional low pH perturbation of the chemical shift of the C(2)-H peak (but not the C(4)-H peak) of histidine-12 is attributed to a local conformational change with a pHmid of about 3.5.  相似文献   

16.
The structures of various covalent phosphorylated derivatives of alpha-chymotrypsin (alpha-CT) have been studied by 31P NMR spectroscopy. Diisopropylphosphoryl-alpha-chymotrypsin (alpha-DIPCT) shows a single 31P signal at ca. 0.0 ppm (pH 4). At low pH, the 31P NMR spectrum of alpha-DIPCT gradually changed with the appearance of one or two additional peaks. The ratio of the peaks varied with pH, time, and concentration. One of these two new downfield peaks (both at ca. 2.0 ppm) has been previously identified by Markley and co-workers (Markley, 1979; Porubcan et al., 1979) and van der Drift et al. (1985) as an aged monoisopropylphosphoryl-alpha-chymotrypsin (alpha-MIPCT) and is confirmed by our studies. A new additional downfield signal, separate from the alpha-MIPCT signal, is attributed to a dimer of the phosphorylated alpha-DIPCT. Phosphorylation of the enzyme with diphenyl chlorophosphate yields a monophenylphosphoryl-alpha-chymotrypsin (alpha-MPPCT) that also showed a single 31P signal at -2.1 ppm (pH 7). However, the spectrum did not change as a function of pH, incubation time, or concentration. Comparison of the 31P chemical shifts of the native and denatured phosphorylated derivatives of alpha-chymotrypsin suggests changes in the conformation about the P-O ester bonds are at least partially responsible for the various 31P chemical shift differences.  相似文献   

17.
Nuclear magnetic resonance has been used to study the binding of [13C]carbamyl-P (90% enriched) to the catalytic subunit of Escherichia coli aspartate transcarbamylase. Upon forming a binary complex, there is a small change in the chemical shift of the carbonyl carbon resonance, 2 Hz upfield at pH 7.0, indicating that the environments of the carbonyl group in the active site and in water are similar. When succinate, an analog of L-aspartate, is added to form a ternary complex, there is a large downfield change in the chemical shift for carbamyl-P, consistent with interaction between the carbonyl group and a proton donor of the enzyme. The change might also be caused by a ring current froma nearby aromatic amino acid residue. From the pH dependence of this downfield change and from the effects of L-aspartate analogs other than succinate, the form of the enzyme involved is proposed to be an isomerized ternary complex, previously observed in temperature jump and proton NMR studies. The downfield change to chemical shift for carbamyl-P bound to the isomerized complex is 17.7 +/- 1.0 Hz. Using this value, the relative ability of other four-carbon dicarboxylic acids to form isomerized ternary complexes with the enzyme and carbamyl-P has been evaluated quantitatively. The 13C peak for the transition state analog N-(phosphonacetyl)-L-aspartate (PALA), 90% enriched specifically at the amide carbonyl group, is shifted 20 Hz downfield of the peak for free PALA upon binding to the catalytic subunit at pH 7.0. In contrast, the peak for [1-13C] phosphonaceatmide shifts upfield by about 6 Hz upon binding. Since PALA induces isomerization of the enzyme and phosphonacetamide does not, these data provide further evidence consistent with protonation of the carbonyl group only upon isomerization. The degrees of protonation is strong acids of the carbonyl groups of PALA, phosphonacetamide and urethan (a model for the labile carbamyl-P) have been determined, as have the chemical shifts for these compounds upon full protonation. From these data it is calculated that the amide carbonyl groups of carbamyl-P and PALA might be protonated to a maximum of about 20% in the isomerized complexes at pH 7.0. The change in conformation of the enzyme-carbamyl-P complex upon binding L-aspartate, previously proposed to aid catalysis by compressing the two substrates together in the active site, may be accompanied by polarization of the C=O bond, making this ordinarily unreactive group a much better electrophile. A keto analog of PALA, 4,5-dicarboxy-2-ketopentyl phosphonate, also binds tightly to the catalytic subunit and induces a very similar conformational change, whereas an alcohol analog, 4,5-dicarboxy-2-hydroxypentyl phosphonate, does not bind tightly, indicating the critical importance of an unhindered carbonyl group with trigonal geometry.  相似文献   

18.
13C NMR chemical shift results as a function of pH for a series of carboxyl 13C-enriched saturated fatty acids (8-18 carbons) bound to bovine serum albumin (BSA) are presented. For octanoic acid bound to BSA (6:1, mol/mol), the chemical shift of the only FA carboxyl resonance (designated as peak c), plotted as a function of pH, exhibited a complete sigmoidal titration curve that deviated in shape from a corresponding theoretical Henderson-Hasselbach curve. However, FA carboxyl chemical shift plotted as a function of added HCl yielded a linear titration curve analogous to those obtained for protein-free monomeric fatty acid (FA) in water. The apparent pK of BSA-bound octanoic acid was 4.3 +/- 0.2. However, the intrinsic pK (corrected for electrostatic effects resulting from the net positive charge on BSA) was approximately 4.8, a value identical to that obtained for monomeric octanoic acid in water in the absence of protein. For long-chain FA (greater than or equal to 12 carbons) bound to BSA (6:1, mol/mol), chemical shift titration curves for peak c were similar to those obtained for octanoic acid/BSA. However, the four additional FA carboxyl resonances observed (designated as peaks a, b, b', and d) exhibited no change in chemical shift between pH 8 and 3. For C14.0 X BSA complexes (3:1 and 6:1, mol/mol) peaks b' and a exhibited chemical shift changes between pH 8.8 and 11.5 concomitant with chemical shift changes in the epsilon-carbon (lysine) resonance. In contrast, peaks c and d exhibited no change and peak b only a slight change in chemical shift over the same pH range. We conclude: the carboxyl groups of bound FA represented by peaks a, b, b', and d were involved in ion pair electrostatic interactions with positively charged amino acyl residues on BSA; the carboxyl groups of bound FA represented by peak c were not involved in electrostatic interactions with BSA; the similarity of the titration curves of peak c for BSA-bound octanoic acid and long-chain FA suggested that short-chain and long-chain FA represented by peak c were bound to the same binding site(s) on BSA; bound FA represented by peaks b' and a (but not d or b) were directly adjacent to BSA lysine residues. We present a model which correlates NMR peaks b, b', and d with the putative locations of three individual high-affinity binding sites in a three-dimensional model of BSA.  相似文献   

19.
The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained.  相似文献   

20.
N R Shine  T L James 《Biochemistry》1985,24(16):4333-4341
Lysyl-5-fluoro-L-tryptophyllysine and lysyl-5-fluoro-D-tryptophyllysine were synthesized, and their interactions with double-stranded DNA were investigated as a model for protein-nucleic acid interactions. The binding to DNA was studied by monitoring various 19F NMR parameters, the fluorescence, and the optical absorbance in thermal denaturation. The 19F resonance of the L-Trp peptide shifts upfield in the presence of DNA, and that of the D-Trp peptide shifts downfield with DNA present. The influence of ionic strength on the binding of each peptide to DNA and the fluorescence quenching titration of each with DNA indicate that electrostatic bonding (approximately 2 per peptide-DNA complex) dominates the binding in each case and accounts for the similar binding constants determined from the fluorescence quenching, i.e., 7.7 X 10(4) M-1 for the L-Trp complex and 6.2 X 10(-1) for the D-Trp complex. The 19F NMR chemical shift, line width, 19F[1H] nuclear Overhauser effect, and spin-lattice relaxation time (T1) changes all indicate that the aromatic moiety of the L-Trp complex, but not that of the D-Trp complex, is stacked between the bases of DNA. The relative increases in DNA melting temperature caused by binding of the tripeptide diastereomers are also consistent with stacking in the case of the L-Trp peptide. The magnitude of the changes and the susceptibility of the 19F NMR chemical shift to altering the solvent isotope (H2O vs. D2O) suggest that the L-Trp ring is not intercalated in the classical sense but is partially inserted between the bases of one strand of the double helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号