首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or to escape after encountering a predator. While the control of the diurnal patterns of invertebrate drift activity by fish predators has received considerable interest, it remains unclear whether benthivorous fish reduce or increase drift activity. We performed a large-scale field experiment in a second-order stream to test if invertebrate drift was controlled by two benthivorous fish species (gudgeon Gobio gobio and stone loach Barbatula barbatula). An almost fishless reference reach was compared with a reach stocked with gudgeon and loach, and density and structure of the invertebrate communities in the benthos and in the drift were quantified in both reaches. The presence of gudgeon and stone loach reduced the nocturnal drift of larvae of the mayfly Baetis rhodani significantly, in contrast to the findings of most previous studies that fish predators induced higher night-time drift. Both drift density and relative drift activity of B. rhodani were lower at the fish reach during the study period that spanned 3 years. Total invertebrate drift was not reduced, by contrast, possibly due to differences in vulnerability to predation or mobility between the common invertebrate taxa. For instance, Chironomidae only showed a slight reduction in drift activity at the fish reach, and Oligochaeta showed no reduction at all. Although benthic community composition was similar at both reaches, drift composition differed significantly between reaches, implying that these differences were caused by behavioural changes of the invertebrates rather than by preferential fish consumption. The direction and intensity of changes in the drift activity of stream invertebrates in response to the presence of benthivorous fish may depend on the extent to which invertebrate taxa can control their drifting behaviour (i.e. active versus passive drift). We conclude that invertebrate drift is not always a mechanism of active escape from fish predators in natural streams, especially when benthos-feeding fish are present.  相似文献   

2.
1. The objectives were (i) to determine experimentally and to model the relationship between mean water velocity and both the mean distance travelled, and the mean time spent, in the drift by freshwater shrimps, Gammarus pulex; (ii) to develop a drift distance–water velocity model from the experimental study, and validate it with field data; (iii) to examine the relationship between drift rate, water velocity and benthic density with the latter expressed as a mean value for the whole stream and a mean value corrected for the distance travelled in the drift. 2. In field experiments at 10 water velocities (0.032–0.962 m s?1), the significant relationship between the mean drift distance and mean water velocity was described both by a power function (power, 0.96) and a linear relationship. The mean drift time was fairly constant at 8.3 s (95% CL ± 0.4). A simple model estimated the drift distance and time spent in the drift by different percentages of the drifting invertebrates. This model predicted correctly the positive relationship between drift rate and water velocity for field data over a year. 3. The relationship between drift rate per hour and the independent variables, water velocity and benthic density, was well described by a multiple‐regression model. Adding temperature and date did not improve model fit. Variations in water velocity and benthic density explained 96% of the variation in nocturnal drift rate (65% to velocity, 31% to benthic density), but only 40% of the variation in diurnal drift rate (29% to velocity, 11% to benthic density). Correcting benthic density for the drift distances did not improve model fit. 4. The significance of this study is that it developed models to predict drift distances and time, values being similar to those obtained in another, larger stream. It also illustrated the importance of spatial scale in the interpretation of drift by showing that when drift distances were taken into account, the impact of drift on the population was higher (4–10% lost day?1) than when drift distances were ignored (usually < 3% lost day?1), especially at a local level.  相似文献   

3.
1. The Ephemeroptera assemblage of the River Oriège (Pyrenees, France) was studied up- and downstream of a hydroelectric power plant with hypolimnetic releases from a nearby high altitude reservoir. The life histories and larval growth of the six dominant species (Rhithrogena semicolorata, R. sp. gr. hercynia, R. kimminsi, Baetis alpinus, B. rhodani, Ephemerella ignita) were studied 700 m upstream (site A) and 700 and 3500 m downstream (sites B and C, respectively) of the power plant. Their drift patterns were studied at sites A and B. 2. The natural flow of the river was preserved when the plant was inoperative. During power generation, flow and temperature were the two main environmental factors modified. The natural flow in the river below the outlet may be enhanced several times a day from 1 to 11 m3 s–1 in summer and winter, and from 5 to 15 m3 s–1 during spring spates. During hydropeaking, the water was cooled in summer and slightly warmed in winter, but this was attenuated 3500 m downstream from the plant. 3. The density and biomass of the species studied at the three sites reflected both the impact of hydropeaking and the natural longitudinal zonation of the fauna. The lowest density and biomass was estimated at 700 m downstream from the plant (site B), consistent with a prominent role for hydropeaking. Site A showed constant mayfly drift caused by accidental dislodgement plus behavioural drift that was mainly nocturnal. Below the plant, the flushing action of peaking flows added to this a catastrophic drift, which was highest in autumn when the difference between natural and peak flows was greatest. 4. Environmental change caused only slight modifications in the life history patterns, affecting the hatching and/or emergence period and growth of several species. For instance, R. semicolorata grew through the winter below the outlet, when growth was slight upstream from the power plant. Under this kind of river regulation (natural discharge and temperature except during periods of power generation, and intermittent hydropeaking from a separate reservoir) modifications of the thermal regime had a minor effect on the population dynamics of mayflies, unlike hydraulic disturbances which strongly influenced the abundance and structure of the benthic community. Frequent (at least daily) high flow disturbances caused depletion of mayfly populations, despite daily renewal and colonization (drift) from undisturbed upstream locations.  相似文献   

4.
Simultaneous hourly net collections in a meadow and canyon reach of a mountain stream determined diel and spatial abundances of drifting Chironomidae larvae. Sixty-one taxa were identified to the lowest practical level, 52 in the meadow and 41 in the canyon. Orthocladiinae was the most abundant subfamily with 32 taxa and a 24 h mean density of 294 individuals 100 m−3 (meadow) and 26 taxa and a mean of 648 individuals 100 m−3 (canyon). Chironominae was the second most abundant subfamily. Nonchironomid invertebrates at both sites and total Chironomidae larvae (meadow) were predominantly night-drifting. Parakiefferiella and Psectrocladius were day-drifting (meadow) whereas 8 other chironomid taxa (meadow) and 2 taxa (canyon) were night-drifting. All others were aperiodic or too rare to test periodicity, Stempellinella cf brevis Edwards exhibited catastrophic drift in the canyon only. The different drift patterns between sites is attributed to greater loss of streambed habitat in the canyon compared to the meadow as streamflow decreased. Consequent crowding of chironomid larvae in the canyon caused catastrophic drift or interfered with drift periodicty. This study adds to knowledge of Chironomidae drift and shows influences on drift of hydrologic and geomorphic conditions.  相似文献   

5.
SUMMARY. Larvae of Baetis alpinus, B. lutheri and B. rhodani were reared in a stream channel (water temperature range 4.2–11.4°C) in the laboratory. The larval growth was exponential and the mean specific growth rate varied from 1.93 to 2.24% day?1 for B. alpinus, 1.49 to 3.41% day?1 for B. lutheri and 0.79 to 3.11% day?1 for B. rhodani. These variations in growth rate were related to variations in mean temperature and this was the major factor affecting growth in the laboratory. Non-quantitative samples of the benthos in the Seebach and Unterseebach, two stony streams near Lunz, Austria, were taken at approximately monthly intervals from November 1965 to May 1968. In each year, there were two winter and three summer cohorts for B. alpinus from Seebach and two or three winter and one to three summer cohorts for B. lutheri and B. rhodani from Unterseebach. Over the study period of 30 months, eleven cohorts were recorded for B. alpinus and B. lutheri, and ten cohorts for B. rhodani. The life cycle of a cohort varied from 3 to 8 months in B. alpinus, from 2.5 to 9 months in B. lutheri and from 2.5 to 8 months in B. rhodani. Mean specific growth rate in length varied from 0.82 to 2.97% day?1 for B. alpinus, 0.96 to 3.33% day?1 for B. lutheri and 0.65 to 3.01% day?1 for B. rhodani. The percentage of the variability in growth rate accounted for by variations in mean temperature was 63% for B. alpinus, 91% for B. lutheri and 82% for B. rhodani. Therefore mean temperature was clearly the major factor affecting the growth rates in the field. An agreement was found between the growth rates of B. alpinus in the field and the laboratory. The growth rates of B. lutheri and B. rhodani were slower in the field than in the laboratory at higher temperatures. The possible reasons for this latter discrepancy are discussed, and the growth rates of the three Baetis spp. are compared with those of other species of Ephemeroptera.  相似文献   

6.
Invertebrate drift in a large, braided New Zealand river   总被引:1,自引:0,他引:1  
1. The spatio-temporal patterns of drifting macroinvertebrates in a large, braided New Zealand river were determined by sampling with drift nets, seasonally, for 1 year. 2. Drift densities were greatest in autumn, and at night in all seasons except winter. A greater proportion of larger animals drifted at night than during the day in all seasons. Mean annual drift densities were ninety-six animals 100m?3 and 47 mg dry weight 100 m?3. 3. There were relatively few taxa in the drift, and the mayfly Deleatidium spp. comprised more than 85% of the drifting aquatic invertebrates in all seasons except autumn. Chironomidae and terrestrial forms were the only other groups to occur at densities of more than one animal 100 m?3 in all seasons. 4. Drift density was positively correlated with benthic density, which in turn was adversely affected by floods, particularly during spring and summer.  相似文献   

7.
The residence time distribution analysis was used to investigated the flow behaviour in an external-loop airlift bioreactor regarded as a single unit and discriminating its different sections. The experimental results were fitted according to plug flow with superimposed axial dispersion and tank-in-series models, which have proved that it is reasonable to assume plug flow with axial dispersion in the overall reactor, in riser and downcomer sections, as well, while the gas separator should be considered as a perfectly mixed zone. Also, the whole reactor could be replaced with 105-30 zones with perfect mixing in series, while its separate zones, that is the riser with 104-27, the downcomer with 115-35 and the gas separator with 25-5 perfectly mixed zones in series, respectively, depending on gas superficial velocity, AD/AR ratio and the liquid feed rate.List of Symbols A D cross sectional area of downcomer (m2) - A R cross sectional area of riser (m2) - A 1 A 2 length of connecting pipes (m) - Bo Bodenstein number (Bo=vL·L/D ax (-) - C concentration (kg m–3) - C residence time distribution function - C 0 coefficientEquation (12) - C r dimensionless concentration - D D diameter of downcomer (m) - D R diameter of riser column (m) - D ax axial dispersion coefficient (m2s–1) - H d height of gas-liquid dispersion (m) - H L height of clear liquid (m) - i number of complete circulations - L length of path (m) - m order of moments - N eq number of perfectly mixed zones in series - n c circulating number - Q c recirculating liquid flow rate (m3 s–1) - q F liquid feed flow rate (m3s–1) - Q G gas flow rate (m3s–1) - Q T total liquid flow rate (m3s–1) - r recycle factor - s exponent inEquation (12) regarded as logarithmic decrement of the oscillating part of RTD curve - t time (s) - t C circulation time (s) - t s mean residence time (s) - t 99 time necessary to remove 99% of the tracer concentration (s) - V A volume of connecting pipes (m3) - V D volume of downcomer (m3) - V L liquid volume in reactor (m3) - V R volume of riser (m3) - V LD linear liquid velocity in downcomer (m s–1) - V LR linear liquid velocity in riser (m s–1) - V SLD superficial liquid velocity in downcomer (m s–1) - V SLR superficial liquid velocity in riser (m s–1) - x independent variable inEquation (1) - ¯x mean value of x - z axial coordinate - GR gas holdup in riser - m(x) central moment of m order - 2 variance - dimensionless time  相似文献   

8.
A simple method for measuring the settling velocity (V s) distribution of pollen and spores 30–100 μm in diameter is detailed and evaluated. The method is called the ‘settling tower' and consists in taking sequential pictures of particles falling under gravity in calm air. The scene is illuminated by a cold light source, while a camera takes 15 pictures per second. Between 20,000 and 100,000 images are analysed to obtain the distribution of V s for a given set of particles. The method was validated using two standard particles with mean diameters of 68 and 108 μm, respectively, as well as Lycopodium spores, with a mean diameter of 35 μm. For each set of particles, the theoretical V s distribution was estimated from the particle diameter distribution and the volumetric mass using a non-Stokian law, as the Reynolds numbers of the particles were large. The mean V s was measured with the ‘settling tower' with less than 12% error, while the standard deviation of the V s distribution was estimated with less than 51% error. The maximum error on the mean V s was 12% for the Lycopodium spores and less than 2% for the two larger particles. The mean V s of Lycopodium spores was 4.2 cm s−1, and its standard deviation was 0.7 cm s−1. The reason for the small overestimation of V s for Lycopodium spores by the ‘settling tower' method is discussed. Preliminary measurements shows that, the ‘settling tower' could be of great practical interest for measuring the distribution of V s of maize pollen as well as other types of pollen or spores.  相似文献   

9.
1. Nitrogen (N) and phosphorus (P) fluxes via excretion by benthic invertebrates were quantified in a eutrophic reservoir (Acton Lake, Ohio, U.S.A.). We quantified variation in nutrient fluxes seasonally (June until November 1997), spatially (three sites) and among taxa (chironomids, tubificid oligochaetes and Chaoborus). 2. The three taxa differed in spatial distribution and contribution to nutrient fluxes. Tubificids were the most abundant taxon at two oxic sites (1.5 and 4 m depth), and were exceedingly rare at an anoxic, hypolimnetic site (8 m). Chironomids were abundant only at the shallowest oxic site. Chaoborus was the only abundant taxon at the anoxic site. Total benthic invertebrate biomass was greatest at the shallowest site and lowest at the anoxic, hypolimnetic site. 3. Mass‐specific excretion rate [μmol NH4–N or soluble reactive P (SRP) excreted mg dry mass–1 h–1] varied among experiments and was influenced by temperature. Differences among taxa were not significant. Thus, nutrient flux through benthic invertebrates was affected more by total invertebrate biomass and temperature than by species composition. 4. Fluxes of N and P via benthic invertebrate excretion (μmol NH4–N or SRP m–2 day–1) were greatest at the oxic sites, where fluxes were dominated by the excretion of tubificids and chironomids. The N and P fluxes at the anoxic site were much lower, and were dominated by excretion by Chaoborus. The ratio of N and P excreted by the benthic invertebrate assemblage varied seasonally and was lowest at the anoxic site. 5. Comparison with other measured inputs shows that excretion by benthic invertebrates could be an important source of nutrients, especially of P. However, the relative importance of nutrient excretion by the benthos varies greatly spatially and temporally.  相似文献   

10.
11.
Since terrestrial invertebrates are often consumed by stream fishes, land-use practices that influence the input of terrestrial invertebrates to streams are predicted to have consequences for fish production. We studied the effect of riparian land-use regime on terrestrial invertebrate inputs by estimating the biomass, abundance and taxonomic richness of terrestrial invertebrate drift from 15 streams draining catchments with three different riparian land-use regimes and vegetation types: intensive grazing — exotic pasture grasses (4 streams), extensive grazing — native tussock grasses (6 streams), reserve — native forest (5 streams). Terrestrial invertebrate drift was sampled from replicated stream reaches enclosed by two 1 mm mesh drift nets that spanned the entire channel. The mean biomass of terrestrial invertebrates that entered tussock grassland (12 mg ash-free dry mass m–2 d–1) and forest streams (6 mg AFDM m–2 d–1) was not significantly different (p > 0.05). However, biomass estimated for tussock grassland and forest streams was significantly higher than biomass that entered pasture streams (1 mg AFDM m–2 d–1). Mean abundance and richness of drifting terrestrial invertebrates was not significantly different among land-use types. Winged insects contributed more biomass than wingless invertebrates to both pasture and tussock grassland streams. Winged and wingless invertebrates contributed equally to biomass entering forest streams. Land use was a useful variable explaining landscape-level patterns of terrestrial invertebrate input for New Zealand streams. Evidence from this study suggests that riparian land-use regime will have important influences on the availability of terrestrial invertebrates to stream fishes.  相似文献   

12.
Homogeneity-time is defined and introduced as the criterion for mixing quality in bioreactors. The criterion could replace the mixing time, in the case, when more than one measuring point (sensors) is included in the measuring system. Results based on the homogeneity-time and the temperature pulse method, achieved in stirred tank reactors under aerated conditions as well as in a jet-mixed tank, are presented.List of Symbols C p,p kJ/kg K Heat capacity of the pulse medium - C p,s kJ/kg K Heat capacity of the reactor-medium - F m3/s Flow rate of the pulse-input - i Inhomogeneity - I N Inhomogeneity-number - M (t) °C Ideal response curve - m deNumber of combinations for certain number of sensors acc. to Table 1 - n Number of sensor - p kg/m3 Density of the pulse medium - kg/m3 Density of the tank medium - s 1 °C Mean absolute deviation of the sensor temperatures related on the ideal response curve s2 s Mean absolute deviation of the homogeneity-times related on the time achieved with 6 sensors - t s Time - t (i) s Homogeneity-time - t ps s Starting time of tracer injection - t PE s End time of tracer injection - T E °C Mean medium temperature at the end of experiment - T k °C Temperature at k-th sensor position - T p °C Pulse temperature - T s °C Mean medium temperature before the tracer injection - V s m3 Tank volume before pulse input  相似文献   

13.
The effect of brown trout (Salmo trutta L.) on invertebrate drift density was examined in three previously fish-free springbrooks. Drift density was studied during the day following the sequential introduction of: 1) empty cages, 2) cages containing trout, and 3) empty cages. Each period lasted three whole days, and drift density was measured at daytime and night-time every day. Control drift density was determined using empty cages in two similar springbrooks.Night-time drift density of large Gammarus pulex L. (>3.9 mg DW ind–1) decreased compared to that of smaller size-groups following trout introduction, and was significantly lower (p<0.05) than the pre-introductory level after the trout had been removed again.The daytime drift density of large G. pulex remained unchanged, as did both daytime and night-time drift density of smaller size-groups of G. pulex, and the other taxa investigated (Leuctra hippopus (Kempny), Leuctra nigra (Olivier), Amphimura sp., Nemoura flexuosa Aubert, and Baetis rhodani (Pict.)). No significant changes in drift density were observed in two control springbrooks.  相似文献   

14.
Long-term effects of catchment liming on invertebrates in upland streams   总被引:5,自引:0,他引:5  
1. Catchment liming to mitigate acidification causes major chemical change in freshwaters but longer‐term effects are poorly understood. Using a replicated basin‐scale experiment with a multiple BACI design (= before‐after‐control‐impact), we assessed chemical and biological effects for 10 years after the catchments of three acidified Welsh streams at Llyn Brianne were limed in 1987/88. 2. Stream chemistry was measured weekly to monthly, and macroinvertebrates monitored annually, between 1985 and 1998. Biological change through time was assessed from the abundance and taxon richness of invertebrates. We paid particular attention to 18 species known to be acid‐sensitive. The effects of liming were assessed by comparing chemical and biological trends among the three replicate limed streams, three acid reference streams and two naturally circumneutral streams. 3. Following single lime applications, acid‐base chemistry in treated streams changed significantly. High mean pH (> 6), increased calcium (> 2.5 mg L?1) and low aluminium (< 0.1 mg L?1) persisted throughout the 10 years following liming. 4. The effects of liming on invertebrates were modest. Acid sensitive taxa increased significantly in abundance in limed streams, but only during 2 years following treatment. Significant effects on richness were more sustained, but on average added only 2–3 acid‐sensitive species to the treated streams, roughly one‐third of their average richness in adjacent circumneutral streams. Only the mayfly Baetis rhodani and the stonefly Brachyptera risi occurred significantly more often in limed streams after treatment than before it. 5. Despite these modest long‐term effects on invertebrates, nearly 80% of the total pool of acid‐sensitive species has occurred at least once in the limed streams in the 10 years since treatment. This pattern of occurrence suggests that the colonization of limed streams by acid‐sensitive taxa reflects limited persistence rather than restricted dispersal. We present evidence to show that episodes of low pH continued to affect acid‐sensitive taxa even after liming. We highlight the importance of extending the time‐periods over which the effects of large‐scale ecological experiments are assessed.  相似文献   

15.
Larval behaviour is important to dispersal and settlement, but is seldom quantified. Behavioural capabilities of larval Lutjanus carponotatus in both offshore pelagic and reef environments at Lizard Island, Great Barrier Reef were observed in situ to determine if they were sufficient to influence dispersal. Offshore, larvae swam with higher directional precision and faster on the windward side of the island (28 cm.s−1) than on the leeward side (16 cm s−1). Most larvae swam directionally. Mean swimming directions were southerly in the windward area and northerly in the leeward area. Larvae avoided the surface and remained mostly between 3–15 m. Larvae released near reefs were 2–3 times faster swimming away from reefs (19 cm s−1) than swimming toward or over them (6–8 cm s−1). Speed swimming away was similar to that offshore. Of 41 larvae released near reefs, 73% reached the reef, 59% settled, and 13% of those reaching the reef were eaten. Larvae settled onto hard and soft coral (58%), topographic reef features (29%) and sand and rubble (13%). Settlement depth averaged 5.5 m (2–8 m). Before settling larvae spent up to 800 s over the reef (mean 231 s) and swam up to 53 m (mean 14 m). About half of the larvae interacted with reef residents including predatory attacks and aggressive approaches by residents and aggressive approaches by settling larvae. Settlement behaviour of L. carponotatus was more similar to a serranid than to pomacentrids. Settlement-stage larvae of L. carponotatus are behaviourally capable, and have a complex settlement behaviour.  相似文献   

16.
Energy costs and energy sources in karate (wado style) were studied in eight male practitioners (age 23.8 years, mass. 72.3 kg, maximal oxygen consumption (VO2max) 36.8 ml · min–1 · kg–1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approximately 80 s). Oxygen consumption (VO2) was determined during pre-exercise rest, the exercise period and the first 270 s of recovery in five consecutive expired gas collections. A blood sample for lactate (la) analysis was taken 5 min after the end of exercise. The overall amount of O2 consumed during the exercise and in the following recovery increased linearly with the duration of exercise (t) from approximately 1.51 (for t equal to 10.5 s (SD 1.6)) to approximately 5.81, for t equal to 81.5 s (SD 1.0). The energy release from la production (VO21a ) calculated assuming that an increase of 1 mmol · l–1 la corresponded to a VO2 of 3 mlO2 · kg–1 was negligible for t equal to or less than 20 s and increased to 17.3 ml · kg–1 (la = 5.8 mmol · l–1 above resting values) for t equal approximately to 80 s. The overall energy requirement (VO2eq) as given by the sum of VO2 and VO2la was described by VO2eq = 0.87 + 0.071 · t (n = 64; r 2 = 0.91), where VO2eq is in litres and t in seconds. This equation shows that the metabolic power (VO2eq · t –1) for this karate style is very high: from approximately 9.51 · min–1 for t equal to 10 s to approximately 4.91 · min–1 for t equal to 80 s, i.e. from 3.5 to 1.8 times the subjects' VO2max. The fraction of VO2eq derived from the amount of O2 consumed during the exercise increased from 11% for t equal to 10 s to 41 % for t equal to 80 s whereas VO21a was negligible far t equal to or less than 20 s and increased to 13 % o for t equal to 80 s. The remaining fraction (from 90% for t equal to 10 s to 46% for t equal to 80 s), corresponding to the amount of O2 consumed in the recovery after exercise, is derived from anaerobic alactic sources, i.e. from net splitting of high energy phosphates during the exercise.  相似文献   

17.
SUMMARY. 1. A soft-water stream iti upland Wales was dosed with sulphuric acid and aluminiutn sulphate at two successive points to create sitnultaneous episodes of low pH, and low pH with increased aluminiutn. Chemical atid biological responses were measured before, during and after the episode and were compared with a reference zone. 2. The pH fell frotn ~7.0 to 4.28 (±0.18 SD) and 5.02 (±0.10) respectively in the acid and aluminium zones. Corresponding aluminium concentrations during the episode were 0.052 g Al m?3 (±0.008) and 0.347 g Al nr3 (±0.047), the former not differing significantly from the reference zone. The concentration of cadmium rose to 0.002- 0.011 g Cd m?3in both treated areas, but the concentrations of other metals were unchanged. 3. In situ toxicity tests were performed with macroinvertebrates and fish. Chironomus riparius. Hydropsyche angustipennis and Dinocras cephalotes suffered no mortality. Ecdyonurus venosus, Baetis rhodani and Gammarus pulex showed up to 25% mortality in both treatment zones and further mortalities occurred after the episode. Brown trout Salmo trutta and salmon Valmo salar s howed 7–10% mortality in the acid zone, but 50–87% in the aluminium zone, where salmon had a significantly shorter LT50than trout. 4. The drift of Simuliidae increased during treatment in both acid and aluminium zones. Drift densities of Dixa puherula, Protonemura meyeri, Ephemeralla ignita and Dicranota sp. increased in the aluminium zone. The most pronounced response was by Baetis rhodani in the aluminium zone where drift density increased by ×8.4 during the episode. 5. Baetis rhodani was the only taxon to show a significant decline in benthic density during the treatment, and then only in the aluminium zone. Drift could account for most of the losses. 6. The depth distribution of invertebrates in the substratum differed between zones following treatment. More individuals were present at the surface of the reference zone (1287 m?2±747) than at the surface of the other zones (<400 m?2); however, densities at greater depths were similar. These patterns probably reflected differences prior to the treatments.  相似文献   

18.
Estimates of age derived from daily ring counts from otoliths and capture rates of larval June sucker Chasmistes liorus were used to determine the relationship between discharge rates of the Provo River and residence time and patterns of larval drift. During 1997, larval drift occurred over a 22 day period when discharge rates were low (mean ±s.d. 3·2 ± 0·0 m3 s?1). In 1998, larval drift occurred in two separate events over a 40 day period. Discharge was higher during the first larval drift period (19 days; 24·8 ± 1·3 m3 s?1) and lower during the second larval drift period (17 days; 7·0 ± 0·9 m3 s?1). In 1997, no larval fish were collected at the lowermost transect on the Provo River (nearest Utah Lake), and few larvae >21 days of age were found. During the first drift period of 1998, larval C. liorus were collected at all transects, and mean age of larvae collected between upstream and downstream transects increased by c. 7 days. During the second drift period of 1998, only a few were collected in the lowermost transects, and age did not increase with proximity to the lake. Patterns in catch and age distribution of larval C. liorus in the lower Provo River suggest that recruitment failure occurs during the larval drift period in years with insufficient discharge to transport larvae into the lake.  相似文献   

19.
Summary The experiments were performed in Dale Park Beck, a stony stream in the English Lake District. Two operators electrofished the sampling area (length 20 m in April and July 1970, and 40 m in May 1971) three times (runs 1, 2, 3) in each experiment.Electrofishing caused a marked increase in the number of invertebrates drifting out of the sampling area, and nearly all taxa taken in the bottom samples were also found in the drift samples. The fish shocker was chiefly responsible for the increased drifting of Plecoptera, Ephemeroptera and Gammarus pulex, and these taxa were dislodged from the substratum more easily than Trichoptera, Coleoptera, Diptera and Polycelis felina. The increased drifting of the latter taxa was chiefly due to the disturbance of the substratum by the two operators.Most of the invertebrates drifting from the upstream end of the experimental section returned to the bottom within the sampling area. The invertebrate drift out of the sampling area came chiefly from the downstream end of the section, and was equivalent to a loss of only 5% from the total benthos in the sampling area (losses varied between <1 and 13% for individual taxa).  相似文献   

20.
1. The hydraulic and geomorphic characteristics of stream patches are often associated with distinctive assemblages or densities of stream invertebrates, and it is routinely presumed that these patterns reflect primarily species‐specific habitat requirements. An alternative hypothesis is that such patterns may be influenced by constraints on movement, such as the results of departure and settlement processes. We describe a manipulative experiment that examined how the hydraulic environments created by topographic bedforms influenced the drift behaviour and potential settlement sites for two species of mayfly (Baetis rhodani and Ecdyonurus torrentis). These species are common in the drift and often co‐occur in streams, but differ in their small‐scale distribution patterns, body shape and movement behaviour. 2. Flume experiments were carried out to determine how the hydraulic environments conditioned by a step bedform influence the behaviour of mayflies in the drift (swimming, posturing, tumbling), and the consequences of those behaviours (drift distance and time), compared to drift over a plane bed. The ramped step in the flume mimicked step bedforms that are common in coarse‐grained, high‐gradient streams. In contrast to the plane bed, a zone of recirculating flow was created downstream of the step, above which flow was faster and more turbulent. Uniform flows are used in most flume studies of drift; our approach is novel in recreating a complex hydraulic environment characteristic of stream channels. 3. Both species had some behavioural control over drift, and drift distances and times were shorter for live larvae than for dead larvae over the plane bed. The step had no impact on drift time or distance for live Baetis, but dead larvae were trapped in the flow separation eddy and drift time increased accordingly. Some Ecdyonurus also became trapped in the eddy, but live larvae drifted farther than dead larvae, and farther over the step than the plane bed. 4. Whilst in the drift, larvae altered their behaviour according to the ambient hydraulic environment, but in a species‐specific manner. Over the plane bed, Baetis had occasional swimming bursts, but primarily postured (maintained a stable body orientation), whereas Ecdyonurus spent roughly equal time posturing and swimming. In the more turbulent flows generated by the step, Baetis spent proportionately more time swimming, whereas Ecdyonurus spent more time posturing and often tumbling as body orientation became unstable. 5. In a high‐gradient stream, Baetis was more abundant close to steps than in plane bed patches with less complex flow, whereas the opposite pattern held for Ecdyonurus. Thus, the small‐scale distribution patterns of these species within streams correspond to their drift behaviours and ability to access various hydraulic patch types in our flume. These results are consistent with the hypothesis that constraints on movement and settlement may be important driver of distribution patterns within streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号