首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The objectives were (i) to determine experimentally and to model the relationship between mean water velocity and both the mean distance travelled, and the mean time spent, in the drift by freshwater shrimps, Gammarus pulex; (ii) to develop a drift distance–water velocity model from the experimental study, and validate it with field data; (iii) to examine the relationship between drift rate, water velocity and benthic density with the latter expressed as a mean value for the whole stream and a mean value corrected for the distance travelled in the drift. 2. In field experiments at 10 water velocities (0.032–0.962 m s?1), the significant relationship between the mean drift distance and mean water velocity was described both by a power function (power, 0.96) and a linear relationship. The mean drift time was fairly constant at 8.3 s (95% CL ± 0.4). A simple model estimated the drift distance and time spent in the drift by different percentages of the drifting invertebrates. This model predicted correctly the positive relationship between drift rate and water velocity for field data over a year. 3. The relationship between drift rate per hour and the independent variables, water velocity and benthic density, was well described by a multiple‐regression model. Adding temperature and date did not improve model fit. Variations in water velocity and benthic density explained 96% of the variation in nocturnal drift rate (65% to velocity, 31% to benthic density), but only 40% of the variation in diurnal drift rate (29% to velocity, 11% to benthic density). Correcting benthic density for the drift distances did not improve model fit. 4. The significance of this study is that it developed models to predict drift distances and time, values being similar to those obtained in another, larger stream. It also illustrated the importance of spatial scale in the interpretation of drift by showing that when drift distances were taken into account, the impact of drift on the population was higher (4–10% lost day?1) than when drift distances were ignored (usually < 3% lost day?1), especially at a local level.  相似文献   

2.
1. The objective was to determine the major factors affecting the downstream dispersal (drift) of freshwater shrimps, Gammarus pulex. Sample replication and frequency are major problems in the quantification of drift. For the first time, these problems were avoided by sampling the whole stream continuously so that all the shrimps drifting downstream at the sampling point were caught in a net emptied at dusk and dawn in 1966, and every 3 days in 1967. 2. There was no consistent seasonal pattern in drift rates, but a high proportion of annual drift was taken in only a few samples. There was a nocturnal diel pattern of drift with peaks soon after dusk and just before dawn. A power function described the significant (P < 0.001) relationship between drift and flow, and was used to neutralise the dominant effects of flow by standardising total drift over 24 h, nocturnal drift and diurnal drift (drift per 50 m3). These were all significantly (P < 0.001) related to benthos density, but not to date, temperature, or length of the night or day. 3. The relationship between drift values and the independent variables, flow and benthos density, was well described (P < 0.001) by a multiple‐regression model. Adding temperature, date, and/or the length of the night or day did not improve model fit. Variations in flow and benthos density explained 94% of the variation in total drift over 24 h, 97% of the variation in nocturnal drift, but only 44% of the variation in diurnal drift. A power function described (P < 0.001) the relationship between total drift and the volume of water sampled over 3‐day periods in 1967. Flow explained 95% of this drift variation; it was unnecessary to add another variable such as benthos density. 4. The significance of this study is that it avoided the problems associated with the quantification of drift samples. Therefore, the conclusions are more robust than those of many previous studies. A high proportion of the annual drift losses would have been undetected by intermittent sampling. Temperature, season, night or day length had no significant effect on drift densities, and the relationship between drift and benthos densities was proportional, not density dependent. The nocturnal increase in drift could not be interpreted as an antipredator behaviour. The dominance of flow and benthos density was apparent but the quantitative relationships posed further questions, especially those related to drift distances at different velocities.  相似文献   

3.
Stream invertebrate drift below the cave source of South Branch Creek, Minnesota, generally increased rapidly. Ephemeroptera and Trichoptera increased rapidly and then decreased at the lower stations (to 430 m) below the cave. Chironomidae drift, in high numbers but low biomass because of their small size, increased fairly rapidly and leveled out at the lowermost stations. Gastropods increased slowly below the cave, reached a maximum, then decreased somewhat at the lowermost station. Drifting oligochaetes, small in size but in very large numbers, increased more slowly below the cave and appeared not to have reached a maximum at the lowermost station. It was concluded that, in general, drift increases fairly rapidly below the stream origin and fluctuates in the upper reaches, probably reflecting benthic population abundance and local ecological conditions, before attaining equilibria downstream, rather than increasing linearly due to cumulative effects. Paper no. 11,172 Scientific Journal Series, Minnesota Agricultural Experiment Station, St. Paul, Minnesota 55108 Paper no. 11,172 Scientific Journal Series, Minnesota Agricultural Experiment Station, St. Paul, Minnesota 55108  相似文献   

4.
Macroinvertebrate drift in a Rocky Mountain stream   总被引:1,自引:4,他引:1  
J. David Allan 《Hydrobiologia》1987,144(3):261-268
An extensive series of drift collections from a Rocky Mountain stream was used to investigate quantitative patterns in the taxonomic composition of drift throughout spring, summer and fall for 1975–1978. Drift was estimated by drift rate, the number of organisms drifting past a point per 24 h; and by drift density, the numbers of organisms collected per 100 m3 of water sampled.Drift densities were up to ten times greater by night than by day, and 24 h drift densities for the total fauna approached 2000 per 100 m3 in June–July, declining to <500 by autumn. Ephemeroptera, and especially Baetis, dominated the drift. Drift rates were greatest in late spring, around 106 per 24 h, which are among the highest values reported for small trout streams. Drift rates declined to <105 during the summer, and shifts in the taxonomic composition are described.Multiple regression analysis of the relationship between drift rate and density, and the independent variables discharge, benthic density and temperature, showed that discharge typically was a significant predictor of 24 h drift rate, usually the best single predictor. In contrast, 24 h drift density most frequently was independent of discharge, indicating that this measure tends to correct for seasonal variation in discharge, as suggested in the literature. However, this was not invariably true. Drift density significantly correlated with benthic density in five of eight taxa inspected, thus seasonal declines in the benthos probably accounted for parallel declines in drift density.  相似文献   

5.
Simultaneous collections of drift and organisms moving either upstream or downstream in association with the substrate were made using a specially designed sampler. Samples were taken in a diel series along a transect across the study riffle of a Colorado foothills stream on six dates over an annual cycle. In addition to longitudinal movements, taxonomic composition and diel periodicity were evaluated. The insect-dominated fauna showed a net downstream displacement. Only the caddisflies Helicopsyche borealis and Hesperophylax occidentalis exhibited net upstream movement, primarily a result of low drift frequencies. The taxonomic composition of moving invertebrates differed from that of the benthos. Drift resembled downstream moving substrate-associated invertebrates in composition, but differed from that of the upstream directed fauna. Taxa collectively exhibited four types of diel patterns: 1) similar downstream (drift and substrate-associated movements) patterns, which generally differed from the upstream pattern; 2) similar benthic (upstream and downstream) patterns, which differed from that of drift; 3) aperiodic patterns; and 4) independent patterns for each type of directional movement. Analysis of size classes based on head capsule width for the mayfly Baetis tricaudatus showed significantly smaller size in stationary individuals compared with moving individuals in the population and revealed that nymphs moving during the day were smaller than those moving at night.  相似文献   

6.
Macro-invertebrate drift was measured entering and leaving two pools on the Middle Fork of the Cosumnes River, a third order California stream. Drift rates for Baetis spp., Chironomidae, Simulium spp., Capniidae and total drift were calculated. Significant differences in the numbers of organisms entering the two pools were found for Baetis, Chironomidae, and Capniidae. Comparisons of drift rates at the upstream and downstream ends of each pool showed that the abundance of Chironomidae, Simulium, Capniidae and total drift changed in different directions across the pools. The numbers of organisms leaving the two pools, however, were not significantly different for Baetis, Simulium, Capniidae and total drift. These findings lead us to hypothesize that long pools act as barriers, not filters, to stream macro-invertebrate drift. The composition of drift leaving the pools in this experiment appeared to be controlled by the composition of the benthic habitat at the tail of the pool and not by the composition of upstream drift entering the pools.  相似文献   

7.
1. Studies of dispersal of macroinvertebrates in streams and rivers tend to be focused on drift, whilst benthic movements are usually considered to be less important.
2. Field-enclosure experiments with the mayfly Baetis rhodani indicate that net dispersal in this species is simply a proportional loss of individuals from the benthos.
3. Neither net upstream or downstream movements exhibited evidence of density-dependence in the form of curvilinear relationships between initial and final densities.
4. The net number of animals moving upstream did not differ significantly from the net number moving downstream.
5. The probable mechanisms behind density-independent dispersal are discussed, as are the implications for our understanding of population dynamics in relation to invertebrate drift.  相似文献   

8.
Simultaneous hourly net collections in a meadow and canyon reach of a mountain stream determined diel and spatial abundances of drifting Chironomidae larvae. Sixty-one taxa were identified to the lowest practical level, 52 in the meadow and 41 in the canyon. Orthocladiinae was the most abundant subfamily with 32 taxa and a 24 h mean density of 294 individuals 100 m−3 (meadow) and 26 taxa and a mean of 648 individuals 100 m−3 (canyon). Chironominae was the second most abundant subfamily. Nonchironomid invertebrates at both sites and total Chironomidae larvae (meadow) were predominantly night-drifting. Parakiefferiella and Psectrocladius were day-drifting (meadow) whereas 8 other chironomid taxa (meadow) and 2 taxa (canyon) were night-drifting. All others were aperiodic or too rare to test periodicity, Stempellinella cf brevis Edwards exhibited catastrophic drift in the canyon only. The different drift patterns between sites is attributed to greater loss of streambed habitat in the canyon compared to the meadow as streamflow decreased. Consequent crowding of chironomid larvae in the canyon caused catastrophic drift or interfered with drift periodicty. This study adds to knowledge of Chironomidae drift and shows influences on drift of hydrologic and geomorphic conditions.  相似文献   

9.
An account is given of the size, form, texture, colour, cohesion and composition of the faeces of 41 species of invertebrates found in chalk streams. The relationships between the character of the faeces and the taxonomic positions and habits of the producers are considered.The importance of faeces production relative to the bulk of stream bed sediments is discussed. Faeces of different origins accumulate in different areas of the stream bed and these differences may be associated in part with their form and structure and in part with the distribution of the species from which they originate. In the summer months tubificid worms alone may be responsible for reworking between 0.3% and 0.5% of the fine particulate material in sediments every day.  相似文献   

10.
11.
A comparative study of the dispersal of 10 species of stream invertebrates   总被引:3,自引:1,他引:3  
1. Apart from downstream dispersal through invertebrate drift, few quantitative data are available to model the dispersal of stream invertebrates, i.e. the outward spreading of animals from their point of origin or release. The present study provides comparative data for 10 species, using two independent methods: unmarked animals in six stream channels built over a stony stream and marked animals in the natural stream. Experiments were performed in April and June 1973 and 1974, with initial numbers of each species varying from 20 to 80 in the stream channels and 20 to 60 for marked animals. 2. Results were the same for marked invertebrates and those in the channels. Dispersal was not density‐dependent; the number of dispersing animals was a constant proportion of the initial number for each species. The relationship between upstream or downstream dispersal distance and the number of animals travelling that distance was well described by an inverse power function for all species (exponential and log models were poorer fits). Results varied between species but were similar within species for the 4 months, and therefore were unaffected by variations in mean water velocity (range 0.04–0.35 m s?1) or water temperature (range 6.7–8.9 °C in April, 12.1–14.8 °C in June). 3. Species were arranged in order, according to their dispersal abilities. Three carnivores (Perlodes, Rhyacophila, Isoperla) dispersed most rapidly (70–91% in 24 h, maximum distances 9.5–13.5 m per day), followed by two species (Protonemura, Rhithrogena) in which about half their initial numbers dispersed (50–51% in 24 h, 7.5–8 m per day), and four species (Ecdyonurus, Hydropsyche, Gammarus, Baetis) in which less than half dispersed (33–40% in 24 h, 5.5–7 m per day). Dispersal was predominantly upstream for all nine species. Few larvae (20%) of Potamophylax dispersed, with similar maximum upstream and downstream distances of 3.5 m per day. The mean time spent drifting downstream was known for seven species from previous studies, and correlated positively with their dispersal distances. Therefore, the species formed a continuum from rapid to very slow dispersers. These interspecific differences should be considered when evaluating the role of dispersal in the maintenance of genetic diversity in stream invertebrates, and in their ability to colonise or re‐colonise habitats.  相似文献   

12.
1. Invertebrate drift is commonly investigated in streams, with the majority of studies focussed on temporal (typically diel) variation. In comparison, few studies have investigated spatial variation in drift and there is little consensus among them. We tested the hypothesis that spatial variation in invertebrate drift is as important as temporal variation. 2. The density of drifting invertebrates in a chalk stream was sampled using an array of nets arranged to determine vertical, lateral and longitudinal variation. Samples were collected at dawn, during the day, at dusk and by night, on four separate monthly occasions. Insecta and Crustacea were analysed separately to identify the effect of differing life history strategies. The density of drifting debris was also recorded, to act as a null model. 3. Time of day and vertical position together explained the majority of the variance in invertebrate drift (79% for Insecta and 97% for Crustacea), with drift densities higher at dusk and night, and nearer the stream bed. Independently, time of day (38%, Insecta; 52%, Crustacea) and vertical position (41%, Insecta; 45%, Crustacea) explained a similar amount of the observed variance. Month explained some of the variance in insect drift (9%) but none for Crustacea. 4. Variation in the density of drifting debris showed little in common with invertebrate drift. There was little variation associated with time of day and only 27% of the observed variation in debris could be explained by the factors investigated here, with month explaining the largest proportion (20%). We suggest the difference in drifting debris and invertebrates provides further evidence for a strong behavioural component in invertebrate drift. 5. Spatial variation in invertebrate drift can be of the same order of magnitude as the much‐described diel temporal variation. The extent of this spatial variation poses problems when attempting to quantify invertebrate drift and we recommend that spatial replication should be incorporated into drift studies.  相似文献   

13.
Diel changes in the density of the fauna of stones and of drift were investigated in the Toorongo River, an upland river of southern Australia. The densities of the ten most common taxa and of the total fauna in the drift and on the stones were negatively correlated, with 16 out of 33 cases being significant (p < 0.05). Five of the ten most common taxa displayed a general trend of reaching day-time peaks in the benthos (11 out of 15 cases) and night-time peaks in the drift (10 out of 15 cases). The total density on the stones reached a significant peak in the day-time while the total drift density peaked at night.  相似文献   

14.
The drifting of invertebrates was sampled for six 24-hour periods from September 1976 to July 1977 in a small stream of the paramo of the Ecuadorian Andes. The composition of the drift is similar to that of the benthos, though percentages may differ markedly. Drift is relatively constant throughout the year, except in March when unusually high rates were noted; at this same period a marked reduction in the benthos was also observed. Diel periodicities in the drift are unclear, although on the whole drift is more important during the daytime; when individual data series are analyzed, weak patterns of day or night drifting can be recognized in some groups. The input of insects through drift from the small streams is thought to be an important source of food for the salmonid fish inhabiting the larger torrents.  相似文献   

15.
Spatial distribution and seasonal variation in densities of the invertebrates were investigated for a year in three stream pools of a South Indian river. The effects of season, substrate type and water depth on the distribution were analyzed. Substrate type and season influenced the invertebrate distribution the most. Leaf packs harboured most of the organisms followed by macro-algal substrate and sand. The lowest densities were observed on rocky substrates and in the water column. Rocky substrates in shallow water supported higher densities of total invertebrates than deeper areas. Chironomid larvae dominated all benthic substrates throughout the year. Of the 19 invertebrate taxa studied, 6 showed no seasonality in densities, and most of the rest showed their highest densities in the pre-monsoon period and lowest in the SW monsoon or post-monsoon periods. However, in two of the three pools, the densities of total invertebrates were highest during the post-monsoon period with secondary peaks in the pre-monsoon period.  相似文献   

16.
Summary The experiments were performed in Dale Park Beck, a stony stream in the English Lake District. Two operators electrofished the sampling area (length 20 m in April and July 1970, and 40 m in May 1971) three times (runs 1, 2, 3) in each experiment.Electrofishing caused a marked increase in the number of invertebrates drifting out of the sampling area, and nearly all taxa taken in the bottom samples were also found in the drift samples. The fish shocker was chiefly responsible for the increased drifting of Plecoptera, Ephemeroptera and Gammarus pulex, and these taxa were dislodged from the substratum more easily than Trichoptera, Coleoptera, Diptera and Polycelis felina. The increased drifting of the latter taxa was chiefly due to the disturbance of the substratum by the two operators.Most of the invertebrates drifting from the upstream end of the experimental section returned to the bottom within the sampling area. The invertebrate drift out of the sampling area came chiefly from the downstream end of the section, and was equivalent to a loss of only 5% from the total benthos in the sampling area (losses varied between <1 and 13% for individual taxa).  相似文献   

17.
1. Aquatic predators may influence drift periodicity either directly or indirectly (by non‐consumptive effects involving chemical cues). We took drift samples (eight successive 3‐h sampling intervals over a 24‐h period) on five dates (September 2007, March, April, June and August 2008). Samples were taken at three sites (one site with trout throughout the year, two sites without trout but with fire salamander larvae as top predators from April to August, but without vertebrate predators during the rest of the year) in a stream near Vienna, Austria, to examine the effects of predators on drift periodicity. 2. Of 45 331 specimens caught, the most abundant taxa were Ephemeroptera (32.3%; mainly Baetidae), Diptera (21.5%; mainly Chironomidae), Amphipoda (17.4%; all Gammarus fossarum), Plecoptera (5.4%), Coleoptera (3.5%) and Trichoptera (1.2%). For more detailed analyses, we chose Ephemeroptera (Baetidae; n = 13 457) and Amphipoda (G. fossarum; n = 7888), which were numerous on all sampling dates. 3. The number of drifting baetids and amphipods, as well as total drift density, was generally higher at night than by day, although without predators these differences were significant for Gammaridae but not for Baetidae. 4. When broken down to size classes, night–day drift ratios generally were not significantly different from equality in all size classes of baetids when larval fire salamanders and trout were absent. When predators were present, however, baetid drift density was usually higher at night, except in the smallest and largest size classes. In all size classes of G. fossarum, drift density was usually higher at night, whether with or without the top predators. 5. Although we could study predator effects on drift periodicity at three sites on only a single stream, it seems that non‐consumptive effects may affect Baetidae. Salamander larvae, most probably via kairomones, induced a shift towards mainly nocturnal drift, which could be interpreted as predator avoidance.  相似文献   

18.
A small first-order, Appalachian Mountain stream received successive seasonal treatments with the insecticide, methoxychlor. Despite an application rate of 10 mg/1 methoxychlor for 4 hours, based on stream discharge, only a small fraction (1.6%) of the insecticide was exported to downstream reaches for a 31 h period during and following treatment. Most of the insecticide was incorporated into sediments of the streambed, which had residues ranging from 0.038 to 11.7 µg methoxychlor/g dry wt of sediments in June 1986 following treatments in December 1985 and March 1986. Despite low concentrations of methoxychlor measured in stream water (maximum = 128 µg/l) during the initial treatment, massive drift (> 950 000 organisms, and 70 g AFDM biomass) occurred from a stream area of about 144 m2. Numerically, collector-gatherer taxa (primarily Chironomidae) dominated drift (63 %) followed by shredders and predators; however, biomass of drift was dominated by shredders (48.9%), followed by predators and collector-gatherers. Compared with pre-treatment benthic abundances, insects were reduced by 75% following the initial treatment in December 1985, and 85% following an additional treatment in March 1986. Benthic abundances of non-insect taxa showed no significant changes. Benthic abundances of shredder, collector-filterer, and scraper functional groups exhibited significant decreases in the first month following treatment. Although benthic abundances of collector-gatherer and predator taxa were reduced by 48.6 and 40.5%, respectively, the reduction was not statistically significant because of high-sample variance. Comparisons of drift composition during the initial treatment with successive quarterly treatments (March 1986 to January 1988) reflected of ongoing pesticide disturbance of the biota as the community structure shifted from one consisting of a diverse insect and non-insect fauna toward one dominated by copepods, oligochaetes, Collembola, and chironomids.  相似文献   

19.
We report daytime drift behavior of lotic macroinvertebrates following short term (12 h) additions of HCl or HCl plus AlCl3 to a circumneutral softwater (alkalinity ca. 100 µeq 1-1) mountain stream in British Columbia, Canada. Addition of HCl (pH reduced from 7.0 to 5.9) resulted in an overall tripling of invertebrate drift density with rapid (< 1 h) increases in chironomid Diptera and Trichoptera. Small Ephemeroptera also entered the drift at high densities, but were delayed about 6 h. Addition of AlCl3 (0.71 to 0.95 mg 1-1 total Al3+) in HCl (stream pH reduced to 5.9) resulted in an overall 6-fold increase in invertebrate drift, with rapid increases by Ephemeroptera and delayed responses by chironomids and Trichoptera. These results suggest that the behavior of several macroinvertebrates from low alkalinity, unacidified streams can be altered by simulations of short-term, mild acidic deposition events. Further, the magnitude and timing of entry into the drift varies among taxonomic groups with the presence or absence of low concentrations of aluminum ions.  相似文献   

20.
The chief objective was to discover why few moribund or dead Salmo trutta fry were observed on the stream bed when mortality within the stream was known to be high ( c . 13 000 dead fry year −1 for whole stream). Newly dead fry were placed in 20 boxes embedded in the stream bed (20 fry of known total weight per box) and arranged in pairs with one box open and one closed. One pair was removed every 2 days, the fish remains being weighed and the invertebrates in the open box being identified and counted. The experiments were performed from late April to early May in 1967, 1968, 1969 and the results were similar in each year. Both wet and dry weights of fry decreased exponentially but the rate of decrease was much higher in the open boxes; detectable fish remains were about 55% of initial weights after 20 days (end of experiment) in closed boxes but zero after 16 days in open boxes. Invertebrate scavengers were responsible for the higher loss rates in the open boxes and showed a definite succession with caddis larvae and carnivorous stonefly larvae dominant at first, but then being replaced by detritivorous stonefly larvae and freshwater shrimps. These experiments show clearly why dead fry disappear rapidly from the stream bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号