首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epithelium of rat small intestine was radioautographed to examine whether RNA is synthesized by the salvage pathway as shown after [3H]uridine injection or by the de novo pathway as shown after [3H]orotic acid injection. The two modes of RNA synthesis were thus investigated during the migration of columnar cells from crypt base to villus top, and the rate of synthesis was assessed by counting silver grains over the nucleolus and nucleoplasm at six levels along the duodenal epithelium--that is, in the base, mid, and top regions of the crypts and in the base, mid, and top regions of the villi. Concomitant biochemical analyses established that, after injection of either [5-3H]uridine or [5-3H]orotic acid: (a) buffered glutaraldehyde fixative was as effective as perchloric acid or trichloracetic acid in insolubilizing the nucleic acids of rat small intestine; (b) a major fraction of the nucleic acid label was in RNA, that is, 91% after [3H]uridine and 72% after [3H]orotic acid, with the rest in DNA; and (c) a substantial fraction of the RNA label was in poly A+ RNA (presumed to be messenger RNA). In radioautographs of duodenum prepared after [3H] uridine injection, the count of silver grains was high over nucleolus and nucleoplasm in crypt base cells and gradually decreased at the upper levels up to the villus base. In the rest of the villus, the grain count over the nucleolus was negligible, while over the nucleoplasm it was low but significant. After [3H]-orotic acid injection, the number of silver grains over the nucleolus was negligible at all levels, whereas over the nucleoplasm the number was low in crypt cells, but high in villus cells with a peak in mid villus. The interpretation is that, except for a small amount of label incorporated into DNA from either precursor by crypt cells, the bulk of the label is incorporated into RNA as follows. In the crypts, cells make almost exclusive use of uridine, that is, of the salvage pathway, for the synthesis of ribosomal RNA in the nucleolus and of messenger and transfer RNA in the nucleoplasm. However, when cells pass from crypt to villus, they mainly utilize orotic acid--i.e., the de novo pathway--for the synthesis of messenger and transfer RNA within the nucleoplasm.  相似文献   

2.
Polyadenylated messenger RNA from mouse kidney labeled in vivo exhibited a pattern of methylation distinct from that of rRNA and tRNA. After mice were given L-[methyl-3H]methionine, 4% of the polyribosomal RNA label was bound to oligo (dT)-cellulose; 20-24% of orotate- or adenine-labeled polyribosomal RNA eluted in the poly(A)+ RNA fraction under similar conditions. [3H]Methyl radioactivity was not incorporated into low molecular weight (5-5.8 S) rRNA, indicating the extent of nonmethylpurine ring labeling was negligible. [3H]Methyl-labeled poly(A)+ RNA sedimented heterogeneously in sodium dodecyl sulfate containing gradients similarly to poly(A)+ mRNA labeled with [3H]orotic acid. Based on an average molecular length of 2970 nucleotides, renal mRNA was estimated to contain 8.6 methyl moieties per molecule. Analysis of alkaline-hydrolyzed RNA sampled by DEAE-Sephadex-urea chromatography provided estimates of the relative amounts of base and ribose methylation. Although 83% of the [3H]methyl radioactivity in rRNA was in the 2'-0-methylnucleotide fraction, no methylated dinucleotides were found in mRNA. In poly(A)+ mRNA 60% of the [3H]methyl label was in the mononucleotide fraction; the remainder eluted between the trinucleotide and tetranucleotide markers and had a net negative charge between -4 and -5. The larger structure, not yet charcterized, could result from two or three consecutive 2'-0-ribose methylations and is estimated to contain 2.6 methyl residues. Alternatively, the oligonucleotide could be a 5'-terminal methylated nucleotide species containing 5'-phosphate(s) in addition to the 3'-phosphate moiety resulting from alkaline hydrolysis. Either structure could have a role in the processing or translation of mRNA in mammalian cells.  相似文献   

3.
Cordycepin triphosphate inhibited in vitro [3H]GMP incorporation by pricornavirus-specific polymerase complexes isolated from infected HeLa cells. The inhibition of [3H]GMP incorporation could be reversed with ATP added to the reaction mixture along with the inhibitor, but not with GTP so added or with ATP added 10 min after the inhibitor. Products synthesized in vitro in the presence of cordycepin triphosphate lacked full-length single-stranded viral RNA. These results support RNA chain termination by specific competition with ATP as the mechanism of inhibition of picornavirus-specific RNA synthesis by cordycepin triphosphate.  相似文献   

4.
The effect of estradiol-17 beta on RNA synthesis and the amounts of total RNA and polyadenylic acid were determined in primary cultures of Xenopus laevis liver parenchymal cells. Results showed that estradiol did not alter the RNA content significantly; control cells contained 11.9 +/- 0.34 micrograms and estradiol-treated cells 12.4 +/- 0.17 micrograms per 10(6) cells on day 2 of estradiol treatment, and 22.0 +/- 0.61 micrograms and 24.0 +/- 1.09 micrograms on day 5. Hybridization with [3H]poly(U) revealed that estradiol increased the poly(A) content about 1.2-fold more than in the controls on day 2 and 1.6-fold on day 5 of estradiol treatment. The actual rate of RNA synthesis was estimated from analyses of the kinetics of [3H]adenosine incorporation into the ATP pool and into RNA. The initial rate of incorporation of ATP into RNA on day 5 of estradiol treatment was 29.38 pmol/min/10(6) cells and the rate of the controls of 29.35. Subsequent accumulation kinetics of [3H]adenosine into RNA showed no difference between estradiol and the control cells. Thus, estradiol did not alter the rate of total RNA synthesis and the total RNA content significantly, but it did increase the poly(A) content.  相似文献   

5.
A crude RNA polymerase preparation was made from HeLa cells infected for 3 h with poliovirus. All virus-specific RNA species labeled in vitro (35S RNA, replicative intermediate RNA [RI], and double-stranded RNA [dsRNA]) would bind to poly(U) filters and contained RNase-resistant stretches of poly(A) which could be analyzed by electrophoresis in polyacrylamide gels. After incubation for 45 min with [3-H]ATP in the presence of the other three nucleoside triphosphates, the labeled poly(A) on the RI and dsRNA migrated on gels as relatively homogenous peaks approximately 200 nucleotides in length. In contrast, the poly(A) from the 35S RNA had a heterogeneous size distribution ranging from 50 to 250 nucleotides. In the absence of UTP, CTP, and GTP, the size of the newly labeled poly(A) on the dsRNA and RI RNA was the same as it was in the presence of all four nucleoside triphosphates. However the poly(A) on the 35S RNA lacked the larger sequences seen when the other three nucleoside triphosphates were present. When [3-H]ATP was used as the label in infected and uninfected extracts, heterogeneous single-stranded RNA sedimenting at less than 28S was also labeled. This heterogeneous RNA probably represents HeLa cytoplasmic RNA to which small lengths of poly(A) (approximately 15 nucleotides) had been added. These results indicate that in the in vitro system poly(A) can be added to both newly synthesized and preexisting RNA molecules. Furthermore, an enzyme capable of terminal addition of poly(A) exists in both infected and uninfected extracts.  相似文献   

6.
The synthesis of poly(A)-containing RNA by isolated mitochondria from Ehrlich ascites cells was studied. Isolated mitochondria incorporate [3H]AMP or [3H]UTP into an RNA species that adsorbs on oligo (dT)-cellulose columns or Millipore filters. Hydrolysis of the poly(A)-containing RNA with pancreatic and T1 ribonucleases released a poly(A) sequence that had an electrophoretic mobility slightly faster than 4SE. In comparison, ascites-cell cytosolic poly(A)-containing RNA had a poly(A) tail that had an electrophoretic mobility of about 7SE. Sensitivity of the incorporation of [3H]AMP into poly(A)-containing RNA to ethidium bromide and to atractyloside and lack of sensitivity to immobilized ribonuclease added to the mitochondria after incubation indicated that the site of incorporation was mitochondrial. The poly(A)-containing RNA sedimented with a peak of about 18S, with much material of higher s value. After denaturation at 70 degrees C for 5 min the poly(A)-containing RNA separated into two components of 12S and 16S on a 5-20% (w/v) sucrose density gradient at 4 degrees C, or at 4 degrees and 25 degrees C in the presence of formaldehyde. Poly(A)-containing RNA synthesized in the presence of ethidium bromide sedimented at 5-10S in a 15-33% (w/v) sucrose density gradient at 24 degrees C. The poly(A) tail of this RNA was smaller than that synthesized in the absence of ethidium bromide. The size of the poly(A)-containing RNA (approx. 1300 nucleotides) is about the length necessary for that of mRNA species for the products of mitochondrial protein synthesis observed by ourselves and others.  相似文献   

7.
Up to about 50% of the total radioactivity in pulse-labeled RNA in Bacillus brevis 47-5, a high-protein-producing bacterium, was found in the polyadenylated fraction [termed poly(A)-RNA] isolated by adsorption to oligodeoxythymidylic acid-cellulose. Labeled RNA was bound to the cellulose regardless of whether the radioactive precursor was [3H]adenosine or [3H]uridine, showing that the adsorbed material was poly(A)-RNA rather than free poly(A). Poly(A) tracts, isolated after digestion of pulse-labeled RNA with pancreatic and T1 RNases, were homogeneous, with a length of about 95 nucleotides. Susceptibility of the isolated poly(A) tracts to degradation by snake venom phosphodiesterase and polynucleotide phosphorylase indicated that the poly(A) sequences were located directly at the 3'-terminal of the RNA molecules. Comparison of the poly(A)-RNA content in high-protein-producing and nonprotein-producing cells of B. brevis 47 showed much higher levels in the former. Electrophoretic analysis in both denaturing and denaturing polyacrylamide gels of the poly(A)-RNAs showed a heterogeneous population of molecules ranging in size from 23S to 4S. Comparison of the molecular-weight distribution patterns revealed that a significantly greater amount of high-molecular-weight poly(A)-RNA (comigrating with 23S RNA) was present under conditions in which extracellular protein production was high. The possibility that a substantial fraction of the poly(A)-RNA might be involved in the synthesis of extracellular proteins in B. brevis 47 is discussed.  相似文献   

8.
Protoplasts enzymically isolated from suspension cultures of Centaurea cyanus L. incorporate radioactive precursors into RNA with kinetics similar to that of whole cells. There are differences, however, in several other aspects of RNA metabolism. The proportion of total RNA that contains poly(A) sequences (25 to 30%) is similar in both freshly isolated protoplasts and whole cells after a 20-minute pulse with [3H]adenosine. After a 4-hour pulse, however, poly(A)-containing RNA makes up 30% of the total RNA in protoplasts whereas it drops to 8% in whole cells. There appears to be a faulty processing of ribosomal precursor into the mature ribosomal species, as the precursor seems to accumulate to higher levels relative to the mature 18S and 25S rRNAs in protoplasts as compared to whole cells. Additional differences are seen in the size distributions of poly(A)-containing RNA, although the length of the poly(A) segment is similar in both protoplasts and whole cells. Within 24 hours protoplasts appear to have resumed a pattern of RNA synthesis similar to that of whole cells.  相似文献   

9.
It is possible to label with radioactivity newly synthesized ovarian RNA after intraperitoneal injection of [3H]guanosine and [3H]uridine into immature Xenopus laevis, if ovaries in which only previtellogenic stage 1 oocytes are present. Following the amount of radioactivity in the ovarian pool of acid-soluble precursors indicates a complete clearance of acid-soluble radioactivity within 15–20 days after injection. Incorporation of radioactivity into total RNA (which is almost exclusively 4 and 5S RNAs at this stage) and poly(A)+ RNA ceases between 15 and 20 days after injection, but the total amount of radioactivity in these RNA fractions does not decline appreciably over the next 18 months. During this time, the ovary grows and develops since stage 6 oocytes eventually appear and there is a 10- to 20-fold increase in total RNA content, which changes in composition from almost exclusively (95%) 4 and 5S RNAs to mainly (75%) 18 and 28S RNAs. Thus, despite continued growth and development, radioactive RNA molecules synthesized during previtellogenesis survive for lengths of time commensurate with the length of oogenesis (1–2 years). Although very limited (<7%) reincorporation of radioactivity into RNA is detected, it cannot alone account for the stability of the label in poly(A)+ RNA. These results are interpreted as indicative of synthesis during previtellogenesis of tRNA, 5SrRNA, and messenger RNA molecules which are very long-lived.  相似文献   

10.
11.
Polyadenylated [poly(A)+] RNA molecules have been isolated from Methanococcus vannielii by oligodeoxythymidylate-cellulose affinity chromatography at 4 degrees C. Approximately 16% of the label in RNA isolated from cultures allowed to incorporate [3H]uridine for 3 min at 37 degrees C was poly(A)+ RNA. In contrast, less than 1% of the radioactivity in RNA labeled over a period of several generations was contained in poly(A)+ RNA molecules. Electrophoretic separation of poly(A)+ RNA molecules showed a heterogeneous population with mobilities indicative of sizes ranging from 900 to 3,000 bases in length. The population of poly(A)+ RNA molecules was found to have a half-life in vivo of approximately 12 min. Polyadenylate [poly(A)] tracts were isolated by digestion with RNase A and RNase T1 after 3' end labeling of the poly(A)+ RNA with RNA ligase. These radioactively labeled poly(A) oligonucleotides were shown by electrophoresis through DNA sequencing gels to average 10 bases in length, with major components of 5, 9, 10, 11, and 12 bases. The lengths of these poly(A) sequences are in agreement with estimates obtained from RNase A and RNase T1 digestions of [3H]adenine-labeled poly(A)+ RNA molecules. Poly(A)+ RNA molecules from M. vannielii were labeled at their 5' termini with T4 polynucleotide kinase after dephosphorylation with calf intestine alkaline phosphatase. Pretreatment of the RNA molecules with tobacco acid pyrophosphatase did not increase the amount of phosphate incorporated into poly(A)+ RNA molecules by polynucleotide kinase, indicating that the poly(A)+ RNA molecules did not have modified bases (caps) at their 5' termini. The relatively short poly(A) tracts, the lack of 5' cap structures, and the instability of the poly(A)+ RNA molecules isolated from M. vannielii indicate that these archaebacterial poly(A)+ RNAs more closely resemble eubacterial mRNAs than eucaryotic mRNAs.  相似文献   

12.
The [3H]XTPs are used widely to monitor RNA synthesis in vitro. Recently, we discovered that they reflected only 40-45% of the true rate of nuclear RNA synthesis. Thus, when [8-14C]GTP was used, 1466 pmol [8-14C]GMP was incorporated per mg DNA/10 min. On the other hand, when [8-3H]GTP was used, only 564 pmol [8-3H]GMP was incorporated per mg DNA/10 min. There are three obvious factors that could have contributed to this greater than 2-fold difference in the apparent incorporation rate: commercial [8-3H]GTP sample was contaminated with substances causing the assay medium to be less efficient in RNA synthesis; 3H exchange occurred during acid washing of the [3H]RNA; and there was a greater quenching effect on [3H]RNA. Experiments were designed to test each of these alternatives. We are able to conclude that none of the above three are contributing factors. Our data also show that the 3H label was removed after it was incorporated into RNA. Similar differences were observed when 3H and 14C labeled pairs of ATP, UTP and CTP were compared. Furthermore, when nuclei were fractionated into nucleolar and nucleoplasmic fractions and carried out RNA synthesis, the loss of 3H label was observed mainly from the nucleoplasmic fraction.  相似文献   

13.
An mRNA-dependent reticulocyte lysate has been used to translate foot-and-mouth disease virus RNA in vitro. Polypeptides P16, P20a, and P88, which have been shown to be derived from the 5' end of the RNA by pactamycin mapping experiments with infected cells, were preferentially synthesized in vitro. Removal of VPg, the small protein covalently linked to the 5' end of the genome RNA, had no effect on the translation of the RNA. The two RNA fragments (L and S) produced by specific digestion of the polycytidylic acid [poly(C)] tract with RNase H were also translated in vitro. The L fragment, consisting of RNA to the 3' side of the poly(C) tract and including the polyadenylic acid [poly(A)] tract, directed the synthesis of the same products as those made by full-length RNA. However, no small defined products were produced when the S fragment, which contains the 5' end of the RNA, was translated. These results show that the major initiation site for protein synthesis on foot-and-mouth disease virus RNA is to the 3' side of the poly(C) tract. Furthermore, the use of N-formyl [35S]methionine tRNAfMet as a label for the initiation peptides showed that the major polypeptide labeled in lysates primed with both full-length RNA and the L fragment was P16, i.e., the protein nearest the initiation site for translation as deduced from pactamycin mapping experiments. Fragments of RNA were also translated in vitro. Those containing the poly(C) tract gave products similar to those produced when full-length RNA was translated. The polypeptides synthesized when fragments containing the poly(A) tract were used, however, did not resemble those made from full-length RNA.  相似文献   

14.
Interferon-treated HeLa cells were incubated with [3H]uridine to label mRNA and were then exposed to the double-stranded RNA poly(inosinic acid).poly(cytidylic acid) (In.Cn). The incubation with In.Cn greatly enhanced the decay of mRNA. When the cells were incubated in this way in the presence of cycloheximide, which blocks ribosome movement along mRNA, extensive polysome degradation was detected in interferon-treated cells. Products of degradation of mRNA were recovered from monosomes which were presumably formed as a result of endonucleolytic breaks of mRNA. This endonucleolytic activity was correlated with the formation of 2',5'-oligo(A) by an enzyme induced by interferon and activated by double-stranded RNA; the 2',5'-oligo(A) was previously shown to activate an endonuclease in cell extracts. The 2',5'-oligo(A) levels in cells were measured by a competition-binding assay. Details of the procedure used are described, including synthesis of highly radioactive (2'-5')pppA3[32P]cytidine 3',5'-diphosphate, separation of 2',5'-oligo(A) binding from degrading activities, and specificity of the assay.  相似文献   

15.
We examined the kinetics of incorporation of [3H]adenine into polyadenylate-containing ribonucleic acid [poly(A)-containing RNA] in yeast. The total poly(A)-containing RNA from spheroplasts and intact cells and the polysomal poly(A)-containing RNA exhibited similar incorporation kinetics. At 30 C half-saturation of the pool of poly(A)-containing RNA with label occurred in approximately 22 min. Since precursor pools appeared to require 5 min to saturate with label, we conclude that at 30 C messenger RNA molecules in yeast decay with an average half-life of 17 min.  相似文献   

16.
The distribution of poly(A)-containing RNA in the tapetal cells of Hyoscyamus niger during microsporogenesis was followed by in situ hybridization with [3H]poly(U) as a probe. Although no poly(A)-containing RNA accumulated in the premeiotic tapetum, [3H]poly(U) binding sites were detected in the tapetum as meiosis was completed in the microsporocytes. Accumulation of poly(A)-containing RNA in the tapetal cells reached a peak before the first haploid mitosis in the pollen grains. With the onset of tapetal senescence at the late uninucleate stage of the pollen grain, [3H]poly(U) binding sites gradually decreased and they completely disappeared in the tapetum at the binucleate pollen stage. The significance of the results is discussed, particularly with regard to the possible role of tapetum in the synthesis of informational macromolecules during microsporogenesis.  相似文献   

17.
When mouse lymphoma cells (L-1210) are treated with methylnitrosourea, a DNA-damaging agent, polyadenosine diphosphoribose (poly(ADP-ribose)) synthetase activity increases 5-8-fold in 2-3 h, while RNA polymerase activity remains constant for an initial 2 h and then gradually decreases to 25-30% of the control level in 5 h. Both alpha-amanitin-sensitive and -resistant RNA polymerase activities are depressed to the same degree by the treatment with methylnitrosourea. The depression in RNA synthesis is virtually prevented when the treated cells are cultured in the presence of 3-aminobenzamide, a specific inhibitor of poly(ADP-ribose) synthetase. Analyses of the RNA extracted from the cells labeled with [3H]uridine by agarose gel electrophoresis and by poly(U)-Sepharose column chromatography show that the contents of ribosomal precursor RNA and poly(A)-containing RNA are both low in the methylnitrosourea-treated cells as compared with those in the untreated cells and that the reduction in the contents of these kinds of RNA is almost completely prevented by the addition of 3-aminobenzamide to the culture medium. These results suggest that the enhancement of poly(ADP-ribosyl)ation causes the decrease in both synthesis of ribosomal RNA and messenger RNA.  相似文献   

18.
Following a 5 min pulse of [5- 3H]orotic acid via the protal vein, the specific radioactivity of non-poly(A)heterogeneous nuclear RNA (HnRNA) reaches a peak at 12 h after partial hepatectomy. In contrast, poly(A)-HnRNA was maximally elevated only at 2 h after operation. After intraportal injection of cordycepin (3'-deoxyadenosine) 1 min before [5-3H]orotic acid, a dose-dependent inhibition of nuclear HnRNA and rRNA occurred. Fractionation of HnRNA on poly(U)-Sepharose following 20 mg/kg of cordycepin revealed that a 65% reduction occurred in the labeling of poly(A)-HnRNA while non-polyactivity of UTP in control and cordycepin-treated animals indicated no significant alterations in these parameters. Assessment of poly(A) size using poly(A)-HnRNA annealed with oligo(dT)10 as template primer for Escherichia coli DNA polymerase I, showed that 20 mg/kg of cordycepin inhibited nuclear polyadenylylation by 43%; no alteration in the binding of poly(A)-HnRNA to Millipore filters occurred at this dose of cordycepin. These results indicate that cordycepin is a non-selective inhibitor of nuclear RNA and poly(A)synthesis in regenerating rat liver.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号