首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Van der Waals interaction energy in globular proteins is presented by the interaction energies between regions of protein spatial structure with homogenous medium density distribution. We introduce a notion of the local medium permittivity as a function of absorptance of molecular groups with particular conformation. Proposed theory avoids shortcomings which are typical for the calculations on the basis of the pairwise additive approximation. The approach takes into account local peculiarities of protein spatial structure and physical-chemical characteristics of amino acid residues and molecular groups.  相似文献   

2.
Abstract

Van der Waals interaction energy in globular proteins is presented by the interaction energies between regions of protein spatial structure with homogenous medium density distribution. We introduce a notion of the local medium permittivity as a function of absorptance of molecular groups with particular conformation. Proposed theory avoids shortcomings which are typical for the calculations on the basis of the pairwise additive approximation. The approach takes into account local peculiarities of protein spatial structure and physical-chemical characteristics of amino acid residues and molecular groups.  相似文献   

3.
本文基于范德华力势能预测2D三向的蛋白质结构。首先,将蛋白质结构预测这一生物问题转化为数学问题,并建立基于范德华力势能函数的数学模型。其次,使用遗传算法对数学模型进行求解,为了提高蛋白质结构预测效率,我们在标准遗传算法的基础上引入了调整算子这一概念,改进了遗传算法。最后,进行数值模拟实验。实验的结果表明范德华力势能函数模型是可行的,同时,和规范遗传算法相比,改进后的遗传算法能够较大幅度提高算法的搜索效率,并且遗传算法在蛋白质结构预测问题上有巨大潜力。  相似文献   

4.
The quantum mechanical self-assembly of two separate photoactive supramolecular systems with different photosynthetic centers was investigated by means of density functional theory methods. Quantum entangled energy transitions from one subsystem to the other and the assembly of logically controlled artificial minimal protocells were modeled. The systems studied were based on different photoactive sensitizer molecules covalently bonded to a non-canonical oxo-guanine::cytosine supramolecule with the precursor of a fatty acid (pFA) molecule attached via Van der Waals forces, all surrounded by water molecules. The electron correlation interactions responsible for the weak hydrogen and Van der Waals chemical bonds increased due to the addition of polar water solvent molecules. The distances between the separated sensitizer, nucleotide, pFA, and water molecules are comparable to Van der Waals and hydrogen bonding radii. As a result, the overall system becomes compressed, resulting in photo-excited electron tunneling from the sensitizer (bis(4-diphenylamine-2-phenyl)-squarine or 1,4-bis(N,N-dimethylamino)naphthalene) to the pFA molecules. Absorption spectra as well as electron transfer trajectories associated with the different excited states were calculated using time dependent density functional theory methods. The results allow separation of the quantum entangled photosynthetic transitions within the same minimal protocell and with the neighboring minimal protocell. The transferred electron is used to cleave a “waste” organic molecule resulting in the formation of the desired product. A two variable, quantum entangled AND logic gate was proposed, consisting of two input photoactive sensitizer molecules and one output (pFA molecule). It is proposed that a similar process might be applied for the destruction of tumor cancer cells or to yield building blocks in artificial cells.  相似文献   

5.
In drug design, the usual strategy involves characterizing and comparing the shapes of molecules. We apply a simple method to accomplish this goal: determining the symmetry-independent shape groups (homology groups of algebraic topology) of a molecular surface.In this paper, we have adapted the method to describing the interrelation between Van der Waals and electrostatic potential surfaces. We describe rigorously the shape features in a series of molecules by using specific ranges of electrostatic potential over a Van der Waals surface. We consider a series of four nicotinic agonists as an example and discuss their expected activities as potential drugs on the basis of the shape similarities found.  相似文献   

6.
Electrostatic interaction in atomic force microscopy   总被引:4,自引:3,他引:1       下载免费PDF全文
In atomic force microscopy, the stylus experiences an electrostatic force when imaging in aqueous medium above a charged surface. This force has been calculated numerically with continuum theory for a silicon nitrite or silicon oxide stylus. For comparison, the Van der Waals force was also calculated. In contrast to the Van der Waals attraction, the electrostatic force is repulsive. At a distance of 0.5 nm the electrostatic force is typically 10-12-10-10 N and thus comparable in strength to the Van der Waals force. The electrostatic force increases with increasing surface charge density and decreases roughly exponentially with distance. It can be reduced by imaging in high salt concentrations. Below surface potentials of ≈50 mV, a simple analytical approximation of the electrostatic force is described.  相似文献   

7.
Van der Waals energies of interaction are calculated by two methods, the macroscopic method of Lifshitz and the microscopic method of London-Casimir and Polder-Hamaker for the case of two semi-infinite slabs separated by a thin film. When retardation effects may be neglected, the London-Hamaker approach yields values of dispersion interactions which almost coincide with those of the Lifshitz approach, the magnitude of the former values being larger by approximately 10–25%, which is attributed to the effect of the molecular environment in condensed media. At 50–100 Å film thicknesses where retardation effects are small, dispersion terms are generally the major part of van der Waals forces in the Lifshitz formulation. Hence, for 50–100 Å film thicknesses the Hamaker approach, which only includes dispersion interactions is generally adequate. By accounting for retardation effects, which significantly reduce the magnitude of dispersion interactions at several hundred Å, there is a reasonable agreement between the values obtained by the macroscopic and microscopic approaches. When polar substances are present and for film thicknesses of several hundred Å, where dispersion interactions are significantly reduced, the major contribution to van der Waals forces may arise from orientation and induction terms. For such cases the Hamaker approach may lead to critical underestimates of the calculated magnitude of van der Waals forces. An ad hoc way to overcome this difficulty which is applicable to any geometry is proposed. This study presents a simple procedure for the determination of free energies of interaction between macroscopic bodies of various shapes. The procedure, which is applicable when the molecules of bodies and surrounding medium are isotropic, yields results which closely approximate those obtained with the Lifshitz theory.  相似文献   

8.
Molecular dynamics of phenylalanine transfer RNA   总被引:2,自引:0,他引:2  
The atomic motions of yeast phenylalanine transfer RNA have been simulated using the molecular dynamics algorithm. Two simulations were carried out for a period of 12 picoseconds, one with a normal Van der Waals potential and the other with a modified Van der Waals potential intended to mimic the effect of solvent. An analysis of large scale motions, surface exposure, root mean square displacements, helical oscillations and relaxation mechanisms reveals the maintenance of stability in the simulated structures and the general similarity of the various dynamic features of the two simulations. The regions of conformational flexibility and rigidity for tRNA(Phe) have been shown in a quantitative measure through this approach.  相似文献   

9.
Bacterial adhesion: A physicochemical approach   总被引:12,自引:0,他引:12  
The adhesion of bacteria to solid surfaces was studied using a physicochemical approach. Adhesion to negatively charged polystyrene was found to be reversible and could be described quantitatively using the DLVO theory for colloidal stability, i.e., in terms of Van der Waals and electrostatic interactions. The influence of the latter was assessed by varying the electrolyte strength. Adhesion increased with increasing electrolyte strength. The adhesion Gibbs energy for a bacterium and a negatively charged polystyrene surface was estimated from adhesion isotherms and was found to be 2–3 kT per cell. This low value corresponds to an adhesion in the secondary minimum of interaction as described by the DLVO theory. The consequences of these findings for adhesion in the natural environment are discussed.  相似文献   

10.
11.
The interaction of bovine milk α- and β-caseins as an efficient drug carrier system with Dipyridamole (DIP) was investigated using spectroscopy and molecular docking studies at different temperatures (20–37 °C). FTIR, CD, and fluorescence spectroscopy methods demonstrated that α- and β-caseins interact with DIP molecule mainly via hydrophobic and hydrophilic interactions and change in secondary structure of α- and β-caseins. DIP showed a higher quenching efficiency and binding constant of α-casein than β-casein. There was only one binding site for DIP and it was located on the surface of the protein molecule. The thermodynamic parameters of calculation showed that the binding process occurs spontaneously and demonstrated that α- and β-caseins provide very good binding and entrapment to DIP via hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Fluorescence resonance energy transfer, synchronous fluorescence spectroscopy, and docking study showed that DIP binds to the Trp residues of α- and β-casein molecules with short distances. Docking study showed that DIP molecule made several hydrogen bonds and van der Waals interactions with α- and β-caseins. The study of cell culture and micellar solubility of DIP demonstrated α- and β-caseins relatively the same helping in delivery of DIP. Milk α- and β-caseins are considered as a useful vehicle for the solublization and stabilization of DIP in aqueous solution at natural pH.  相似文献   

12.
In order to mimic the surface of parenteral nutrition emulsion droplets, the first molecular dynamics simulation of a palmitoyloleoylphosphatidylcholine (POPC) monolayer at a water/triglyceride (trilinoleoylglycerol, LLL) interface was performed. Triglyceride influence was evaluated by comparing computed phospholipid properties to the ones in a similarly modelled hydrated POPC bilayer. As expected, polar head properties (molecular area, lipid hydration, headgroup orientation) were not affected by triglycerides. In contrast, slight differences were observed on phospholipid alkyl tail region (order parameter, diffusion, Van der Waals interactions). This first approach can reasonably be extended to a further more realistic multicomponent model of clinical nutrition emulsions.  相似文献   

13.
Binding isotherms have been determined for the association of horse heart cytochrome c with dioleoyl phosphatidylglycerol (DOPG)/dioleoyl phosphatidylcholine (DOPC) bilayer membranes over a range of lipid compositions and ionic strengths. In the absence of protein, the DOPG and DOPC lipids mix nearly ideally. The binding isotherms have been analyzed using double layer theory to account for the electrostatics, either the Van der Waals or scaled particle theory equation of state to describe the protein surface distribution, and a statistical thermodynamic formulation consistent with the mass-action law to describe the lipid distribution. Basic parameters governing the electrostatics and intrinsic binding are established from the binding to membranes composed of anionic lipid (DOPG) alone. Both the Van der Waals and scaled particle equations of state can describe the effects of protein distribution on the DOPG binding isotherms equally well, but with different values of the maximum binding stoichiometry (13 lipids/protein for Van der Waals and 8 lipids/protein for scaled particle theory). With these parameters set, it is then possible to derive the association constant, Kr, of DOPG relative to DOPC for surface association with bound cytochrome c by using the binding isotherms obtained with the mixed lipid membranes. A value of Kr (DOPG:DOPC) = 3.3-4.8, depending on the lipid stoichiometry, is determined that consistently describes the binding at different lipid compositions and different ionic strengths. Using the value of Kr obtained it is possible to derive the average in-plane lipid distribution and the enhancement in protein binding induced by lipid redistribution using the statistical thermodynamic theory.  相似文献   

14.
Summary Van der Waals energies of interaction between model cell surfaces are calculated for various distances of separation, layer thicknesses and compositions of cell surfaces and intercellular media. In these calculations the cell peripheries are considered to consist of two layers: (1) A phospholipid-cholesterol-protein plasma membrane and (2) a surface coat, which consists of protein, sugar and water. The required Van der Waals parameters of sugars, phospholipids and cholesterol are derived from refractive indices of their solutions in the visible and ultraviolet regions. Polarizabilities and Van der Waals parameters of these substances are determined and shown to be almost independent of concentration of solutions. Resulting isotropic polarizabilities differ by less than five percent from values obtained by the addition of bond polarizabilities.The magnitude of Van der Waals interactions between cell surfaces has been found to vary with composition according to the following sequence: water–15 ergs and 6×10–14 ergs at 50 Å distance of separation, which corresponds to free energies per unit area of 210-1600kT/ 2  相似文献   

15.
The synthesis of six new huperzine analogues was reported. Each product presents an amidification of the free amine on huperzine A. The synthesis strategy of these new huperzine A derivatives is based on a condensation with an acyl anhydride. The binding on HSA of two molecule series (huperzine and benzodiazepine, respectively) was investigated with high performance liquid affinity chromatography (HPLAC) using an HSA column. A thermodynamic approach showed that binding huperzine A on HSA involved hydrophobic and Van der Waals interactions. A comparative thermodynamic study with benzodiazepine molecules was carried out to determine the potential binding site of huperzine derivatives on HSA.  相似文献   

16.
Abstract

The atomic motions of yeast phenylalanine transfer RNA have been simulated using the molecular dynamics algorithm. Two simulations were carried out for a period of 12 picoseconds, one with a normal Van der Waals potential and the other with a modified Van der Waals potential intended to mimic the effect of solvent. An analysis of large scale motions, surface exposure, root mean square displacements, helical oscillations and relaxation mechanisms reveals the maintenance of stability in the simulated structures and the general similarity of the various dynamic features of the two simulations. The regions of conformational flexibility and rigidity for tRNAPhe have been shown in a quantitative measure through this approach.  相似文献   

17.
Equilibrium energy analysis of freeze-fracture planes in membranes   总被引:1,自引:0,他引:1  
We have used equilibrium energy calculations to determine the most probable freeze-fracture planes in a lipid bilayer. Using a pairwise-summation computer method, we have generated numerical values for the Van der Waals potentials (electron shell repulsion, dispersion forces and electrostatic interactions) between molecules. We have compared our theoretical predictions with the experimental conclusion that the fracture planes occur normally between lipid molecules. These calculations also provide information about the composition of intramembranous particles, the potential for local clustering of single lipid types in the fluid membrane, and the importance of lipid molecules to the function of membrane proteins such as voltage-sensitive ion channels.  相似文献   

18.
Van der Waals interactions involving proteins.   总被引:2,自引:1,他引:1       下载免费PDF全文
Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.  相似文献   

19.
We propose a theoretical novel homodimer model of the β- adrenergic receptor (βAR) in complex with a heterogeneous mixture of free fatty acids (FFAs) and cholesterol based on first-principles calculations. We used the density-functional-based tight binding with dispersion (DFTB-D) method, which accurately evaluates van der Waals interactions between FFAs and amino acid residues in the receptor. The calculations suggest that a stable homodimer of bAR can form a complex with FFAs and cholesterol by extensive van der Waals interactions in the cell membrane, and that the heterogeneous composition of the FFAs is important for the stability of the homodimer complex. The stable van der Waals interactions propagate from one of the bAR to the other through the cholesterol and FFAs in the homodimer complex. The energy propagation in the complex has the potential to enhance molecular signaling in adipocytes, because the stability of the complex can influence anti-adiposity effects after oral treatment of the FFA components.  相似文献   

20.
Diabetic macular edema, also known as diabetic eye disease, is mainly caused by the overexpression of vascular endothelial protein tyrosine phosphatase (VE-PTP) at hypoxia/ischemic. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP. However, the binding pattern of VE-PTP with AKB-9778 and the dynamic implications of AKB-9778 on VE-PTP system at the molecular level are poorly understood. Through molecular docking, it was found that the AKB-9778 was docked well in the binding pocket of VE-PTP by the interactions of hydrogen bond and Van der Waals. Furthermore, after molecular dynamic simulations on VE-PTP system and VE-PTP AKB-9778 system, a series of postdynamic analyses found that the flexibility and conformation of the active site undergone an obvious transition after VE-PTP binding with AKB-9778. Moreover, by constructing the RIN, it was found that the different interactions in the active site were the detailed reasons for the conformational differences between these two systems. Thus, the finding here might provide a deeper understanding of AKB-9778 as VE-PTP Inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号