首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To investigate the relationship between the activity of pyruvate dehydrogenase (PDH) bypass and the production of pyruvate of a multi-vitamin auxotrophic yeast Torulopsis glabrata. METHODS AND RESULTS: Torulopsis glabrata CCTCC M202019, a multi-vitamin auxotrophic yeast that requires acetate for complete growth on glucose minimum medium, was selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata WSH-IP303 screened in previous study [Li et al. (2001) Appl. Microbiol. Biotechnol. 55, 680-685]. Strain CCTCC M202019 produced 21% higher pyruvate than the parent strain and was genetically stable in flask cultures. The activities of the pyruvate metabolism-related enzymes in parent and mutant strains were measured. Compared with the parent strain, the activity of pyruvate decarboxylase (PDC) of the mutant strain CCTCC M202019 decreased by roughly 40%, while the activity of acetyl-CoA synthetase (ACS) of the mutant increased by 103.5 or 57.4%, respectively, in the presence or absence of acetate. Pyruvate production by the mutant strain CCTCC M202019 reached 68.7 g l(-1) at 62 h (yield on glucose of 0.651 g g(-1)) in a 7-l jar fermentor. CONCLUSIONS: The increased pyruvate yield in T. glabrata CCTCC M202019 was due to a balanced manipulation of the PDH bypass, where the shortage of cytoplasmic acetyl-CoA caused by the decreased activity of PDC was properly compensated by the increased activity of ACS. SIGNIFICANCE AND IMPACT OF THE STUDY: Manipulating the PDH bypass may provide an alternative approach to enhance the production of glycolysis-related metabolites.  相似文献   

2.
Pyruvate production by Torulopsis glabrata was used as a model to study the mechanism of product inhibition and the strategy for enhancing pyruvate production. It was found that the concentration of cell growth and pyruvate deceased with the increase of NaCl and sorbitol concentrations. To enhance the osmotic stress resistance of the strain, an NaCl-tolerant mutant RS23 was screened and selected through a pH-controlled continuous culture with 70 g/L NaCl as the selective criterion. Compared with the parent strain, mutant RS23 could grow well on the medium containing 70 g/L NaCl or 0.6 mol/L sorbitol. Pyruvate concentration by the mutant strain RS23 reached 94.3 g/L at 82 h (yield on glucose 0.635 g/g) in a 7-l fermentor with 150 g/L glucose as carbon source. Pyruvate concentration and yield of mutant RS23 were 41.1% and 11.1% higher than those of the parent strain, respectively. The strategy for enhancing pyruvate production by increasing osmotic stress resistance may provide an alternative approach to enhance organic acids production with yeast.  相似文献   

3.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

4.
Pyruvate was produced from glucose by Escherichia coli BW25113 that contained formate dehydrogenase (FDH) from Mycobacterium vaccae. In aerobic shake-flask culture (K (L) a?=?4.9?min(-1)), the recombinant strain produced 6.7?g pyruvate?l(-1) after 24?h with 4?g sodium formate?l(-1) and a yield of 0.34?g pyruvate?g?glucose(-1). These values were higher than those of the original strain (0.2?g?l(-1) pyruvate and 0.02?g pyruvate?g?glucose(-1)). Based on the reaction mechanism of FDH, the introduction of FDH into E. coli enhances the accumulation of pyruvate by the regeneration of NADH from NAD(+) since NAD(+) is a shared cosubstrate with the pyruvate dehydrogenase complex, which decarboxylates pyruvate to acetyl-CoA and CO(2). The oxygenation level was enough high to inactivate lactate dehydrogenase, which was of benefit to pyruvate accumulation without lactate as a by-product.  相似文献   

5.
The effect of nitrogen sources including yeast extract, peptone, soybean hydrolyzate and some inorganic nitrogen sources, as well as the nitrogen concentration on the fermentative production of pyruvate by Torulopsis glabrata WSH-IP12 was investigated. The addition of yeast extract greatly inhibited pyruvate accumulation, while peptone was shown to be the most favorable nitrogen source. In flask culture, 15 g l(-1) peptone was needed to consume 80 g l(-1) glucose with 23.4 g l(-1)of pyruvate accumulated. Pyruvate production was markedly dependent on the ratio of carbon to nitrogen (C:N), its production was improved by increasing the concentration of glucose and peptone proportionally and reduced by exclusively increasing the glucose concentration. In a glucose fed-batch culture, cell growth and pyruvate production slowed after 28 h. However, cell growth and pyruvate production recovered after further nitrogen, in the form of peptone and ammonium sulfate, was added to the culture. A final concentration of pyruvate of 54.5 g l(-1) was achieved at 64 h (yield to glucose consumed of 0.471 g g(-l)). By using aqueous ammonia instead of potassium hydroxide for pH control, 57.3 g l(-1) pyruvate with a yield of 0.498 g g(-1) was produced by 55 h. This result further indicates that nitrogen level plays an important role in the production of pyruvate.  相似文献   

6.
The effect of agitation speeds on the performance of producing pyruvate by a multi-vitamin auxotrophic yeast, Torulopsis glabrata, was investigated in batch fermentation. High pyruvate yield on glucose (0.797 g g(-1)) was achieved under high agitation speed (700 rpm), but the glucose consumption rate was rather low (1.14 g l(-1) h(-1)). Glucose consumption was enhanced under low agitation speed (500 rpm), but the pyruvate yield on glucose decreased to 0.483 g g(-1). Glycerol production was observed under low agitation speed and decreased with increasing agitation speed. Based on process analysis and carbon flux distribution calculation, a two-stage oxygen supply control strategy was proposed, in which the agitation speed was controlled at 700 rpm in the first 16 h and then switched to 500 rpm. This was experimentally proven to be successful. Relatively high concentration of pyruvate (69.4 g l(-1)), high pyruvate yield on glucose (0.636 g g(-1)), and high glucose consumption rate (1.95 g l(-1)h(-1)) were achieved by applying this strategy. The productivity (1.24 g l(-1) h(-1)) was improved by 36%, 23% and 31%, respectively, compared with fermentations in which agitation speeds were kept constant at 700 rpm, 600 rpm, and 500 rpm. Experimental results indicate that the difference between the performances for producing pyruvate under a favorable state of oxygen supply (dissolved oxygen concentration >50%) was caused by the different regeneration pathways of NADH generated from glycolysis.  相似文献   

7.
Previously, we reported that pyruvate production was markedly improved in TBLA-1, an H+-ATPase-defective Escherichia coli mutant derived from W1485lip2, a pyruvate-producing E. coli K-12 strain. TBLA-1 produced more than 30 g/l pyruvate from 50 g/l glucose by jar fermentation, while W1485lip2 produced only 25 g/l pyruvate (Yokota et al. in Biosci Biotechnol Biochem 58:2164–2167, 1994b). In this study, we tested the ability of TBLA-1 to produce alanine by fermentation. The alanine dehydrogenase (ADH) gene from Bacillus stearothermophilus was introduced into TBLA-1, and direct fermentation of alanine from glucose was carried out. However, a considerable amount of lactate was also produced. To reduce lactate accumulation, we knocked out the lactate dehydrogenase gene (ldhA) in TBLA-1. This alanine dehydrogenase-expressing and lactate dehydrogenase-defective mutant of TBLA-1 produced 20 g/l alanine from 50 g/l glucose after 24 h of fermentation. The molar conversion ratio of glucose to alanine was 41%, which is the highest level of alanine production reported to date. This is the first report to show that an H+-ATPase-defective mutant of E. coli can be used for amino acid production. Our results further indicate that H+-ATPase-defective mutants may be used for fermentative production of various compounds, including alanine.  相似文献   

8.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

9.
Liang LY  Liu RM  Ma JF  Chen KQ  Jiang M  Wei P 《Biotechnology letters》2011,33(12):2439-2444
Escherichia coli NZN111 is a double mutant with inactivated lactate dehydrogenase and pyruvate formate-lyase. It cannot utilize glucose anaerobically because of its unusually high intracellular NADH/NAD(+) ratio. We have now constructed a recombinant strain, E. coli NZN111/pTrc99a-mdh, which, during anaerobic fermentation, produced 4.3 g succinic acid l(-1) from 13.5 g glucose l(-1). The NADH/NAD(+) ratio decreased from 0.64 to 0.26. Furthermore, dual-phase fermentation (aerobic growth followed by anaerobic phase) resulted in enhanced succinic acid production and reduced byproduct formation. The yield of succinic acid from glucose during the anaerobic phase was 0.72 g g(-1), and the productivity was 1.01 g l(-1) h(-1).  相似文献   

10.
Liu L  Li Y  Shi Z  Du G  Chen J 《Journal of biotechnology》2006,126(2):173-185
This study aimed at increasing the pyruvate productivity from a multi-vitamin auxotrophic yeast Torulopsis glabrata, by increasing the availability of NAD+. We examined two strategies for increasing availability of NAD+. To supplement nicotinic acid (NA), the precursor of NAD+; and to increase the activity of alcohol dehydrogenase integrating with addition acetaldehyde as exterior electron acceptor. The addition of 8 mg l(-1) NA to the fermentation medium resulted in a significant increase in the glucose consumption rate (48.4%) and the pyruvate concentration (29%). An ethanol-utilizing mutant WSH-13 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the alcohol dehydrogenase activity of the mutant WSH-13 increased about 110% and the mutant could utilize ethanol as the sole carbon source for growth (1.8 g l(-1) dry cell weight). When growing with glucose, the addition of 4 mg l(-1) acetaldehyde to the mutant WSH-13 culture broth led to a significant increase in the glucose consumption rate (26.3%) and pyruvate production (22.5%), but the ratio of NADH/NAD+ decreased to 0.22. Acetaldehyde did not affect the glucose and energy metabolism at high dissolved oxygen (DO) concentration. However, at lower DO concentration (20%), maintaining the acetaldehyde concentration in the mutant culture broth at 4 mg l(-1) caused an increased NAD+ concentration but a decreased NADH concentration. As a consequence, the pyruvate production rate, the pyruvate yield on glucose and the pyruvate concentration were 68, 44 and 45% higher, respectively, than the corresponding values of the control (without acetaldehyde). The strategy for increasing the glycolytic flux and the pyruvate productivity in T. glabrata by increasing the availability of NAD+ may provide an alternative approach to enhance the metabolites productivity in yeast.  相似文献   

11.
12.
Using the pyruvate production strain Escherichia coli YYC202 ldhA::Kan different process alternatives are studied with the aim of preventing potential product inhibition by appropriate product separation. This strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate, resulting in acetate auxotrophy during growth in glucose minimal medium. Continuous experiments with cell retention, repetitive fed-batch, and an in situ product recovery (ISPR) process with fully integrated electrodialysis were tested. Although the continuous approach achieved a high volumetric productivity (QP) of 110 g L(-1) d(-1), this approach was not pursued because of long-term production strain instabilities. The highest pyruvate/glucose molar yield of up to 1.78 mol mol(-1) together with high QP 145 g L(-1) d(-1) and high pyruvate titers was achieved by the repetitive fed-batch approach. To separate pyruvate from fermentation broth a fully integrated continuous process was developed. In this process electrodialysis was used as a separation unit. Under optimum conditions a (calculated) final pyruvate titer of >900 mmol L(-1) (79 g L(-1)) was achieved.  相似文献   

13.
The microbial production of 1,3-propanediol (1,3-PD) from glucose was studied in a two-stage fermentation process on a laboratory scale. In the first stage, glucose was converted to glycerol either by the osmotolerant yeast Pichia farinosa or by a recombinant Escherichia coli strain. In the second stage, glycerol in the broth from the first stage was converted to 1,3-PD by Klebsiella pneumoniae. The culture broth from P. farinosa was shown to contain toxic metabolites that strongly impair the growth of K. pneumoniae and the formation of 1,3-PD. Recombinant E. coli is more suitable than P. farinosa for producing glycerol in the first stage. The fermentation pattern from glycerol can be significantly altered by the presence of acetate, leading to a significant reduction of PD yield in the second stage. However, in the recombinant E. coli culture acetate formation can be prevented by fed-batch cultivation under limiting glucose supply, resulting in an effective production of 1,3-PD in the second stage with a productivity of 2.0 g l(-1) h(-1) and a high yield (0.53 g/g) close to that of glycerol fermentation in a synthetic medium. The overall 1,3-PD yield from glucose in the two stage-process with E. coli and K. pneumoniae reached 0.17 g/g.  相似文献   

14.
A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using a Kluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control the KlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g(-1), suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we used K. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1alpha subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g(-1) (maximum theoretical yield, 1 g g(-1)), and with high LDH activity.  相似文献   

15.
Salt-tolerant yeasts are very important for the flavor formation in soy sauce fermentation production. A halophilic aromatic yeast was isolated on the basis of the molecular biological and metabolic functions from soy sauce. The ITS nucleotide sequence alignment method was used to identify the strain as Candida etchellsii by subjecting the sequence to NCBI-BLAST in comparison with that of the C. etchellsii strain Miso 0208 (a typical high-salt-tolerant halophilic aromatic yeast strain). Organic acids, amino acids and volatile flavor compounds were produced by the yeast strain which were analyzed by HPLC and SPME-GC/MS methods. Tartaric acid (0.979 ± 0.040 g/l), formic acid (0.636 ± 0.030 g/l), lactic acid (2.80 ± 0.10 g/l), α-alkone glutaric acid (0.132 ± 0.015 g/l), citric acid (2.59 ± 0.10 g/l) and succinic acid (3.03 ± 0.20 g/l) were detected at 72 h of fermentation, respectively. Free and acid hydrolyzed amino acids at levels of 3.7355 ± 0.0027 and 11.5604 ± 0.0037 g/l, respectively, 4-ethyl guaiacols as well as other volatile flavor compounds were also detected.  相似文献   

16.
A recombinant Bacillus megaterium strain showed the ability to secrete large amounts of pyruvate (up to 27.8 gl( -1)) for growth rates larger than 0.15 h(-1). Cultivation below this growth rate avoids pyruvate formation while minimizing acetate and succinate production. Using exponential feeding, final biomass concentrations of up to 80 g l(-1) were achieved. Overall molar yields for the experiments with pyruvate formation were as high as 0.79 mol mol(-1). Pyruvate formation was caused by the discrepancy between glycolytic and pyruvate dehydrogenase reaction/tricarboxylic acid cycle capacities during glucose excess. High pyruvate resulted in deceleration and subsequent cessation of growth. In addition, this inhibitory effect is likely associated with the phoshoenolpyruvate:glucose phosphotransferase system used by B. megaterium as the main importer for glucose.  相似文献   

17.
Acid-hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol/l sulfuric acid using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol after 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol after 18 h. The results showed that acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by it in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

18.
AIM: To study the impact of assimilable nitrogen, biotin and their interaction on growth, fermentation rate and volatile formation by Saccharomyces. METHODS AND RESULTS: Fermentations of synthetic grape juice media were conducted in a factorial design with yeast assimilable nitrogen (YAN) (60 or 250 mg l(-1)) and biotin (0, 1 or 10 microg l(-1)) as variables. All media contained 240 g l(-1) glucose + fructose (1 : 1) and were fermented using biotin-depleted Saccharomyces cerevisiae strains EC1118 or UCD 522. Both strains exhibited weak growth and sluggish fermentation rates without biotin. Increased nitrogen concentration resulted in higher maximum fermentation rates, while adjusting biotin from 1 to 10 microg l(-1) had no effect. Nitrogen x biotin interactions influenced fermentation time, production of higher alcohols and hydrogen sulfide (H(2)S). Maximum H(2)S production occurred in the medium containing 60 mg l(-1) YAN and 1 microg l(-1) biotin. CONCLUSIONS: Nitrogen x biotin interactions affect fermentation time and volatile production by Saccharomyces depending on strain. Biotin concentrations sufficient to complete fermentation may affect the organoleptic impact of wine. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the necessity to consider nutrient interactions when diagnosing problem fermentations.  相似文献   

19.
In this study, an ethanol fermentation waste (EFW) was characterized for use as an alternative to yeast extract for bulk fermentation processes. EFW generated from a commercial plant in which ethanol is produced from cassava/rice/wheat/barley starch mixtures using Saccharomyces cerevisiae was used for lactic acid production by Lactobacillus paracasei. The effects of temperature, pH, and duration on the autolysis of an ethanol fermentation broth (EFB) were also investigated. The distilled EFW (DEFW) contained significant amounts of soluble proteins (2.91 g/l), nitrogen (0.47 g/l), and amino acids (24.1 mg/l). The autolysis of the EFB under optimum conditions released twice as much amino acids than in the DEFW. Batch fermentation in the DEFW increased the final lactic acid concentration, overall lactic acid productivity, and lactic acid yield on glucose by 17, 41, and 14 %, respectively, in comparison with those from comparable fermentation in a lactobacillus growth medium (LGM) that contained 2 g/l yeast extract. Furthermore, the overall lactic acid productivity in the autolyzed then distilled EFW (ADEFW) was 80 and 27 % higher than in the LGM and DEFW, respectively.  相似文献   

20.
Glycerol production by a novel osmotolerant yeast Candida glycerinogenes   总被引:11,自引:0,他引:11  
Candida glycerinogenes, an osmotolerant yeast isolated from a natural sample in an environment of high osmotic pressure, had a modest sugar-tolerance and an extremely high glycerol productivity. The optimum conditions for glycerol formation by C. glycerinogenes were a temperature of 29-33 degrees C and a pH of 4-6. The optimum medium for glycerol production consisted of 230-250 g glucose/l, 2 g urea/l and 5 ml corn steep liquor/l (55-65 mg phosphates/l); the pH was not adjusted. The highest yield of glycerol was 64.5% (w/w) based on consumed glucose from 240 g glucose/l, and the highest concentration of glycerol was 137 g/l from 260 g glucose/l. These results were obtained by using a 30-l agitated fermentor under optimal fermentation conditions. In ten batch-fermentations carried out in a 50,000-l airlift fermentor, an average yield of glycerol of 50.67% (w/w) and an average glycerol concentration of 121.9 g/l were obtained from an average 240.6 g glucose/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号