首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship of 17 Xanthomonas campestris pathotype strains, three additional X. campestris strains, and the type strain of Xanthomonas albilineans were examined by DNA-DNA hybridization tests. The results coupled with those of a previous study (Hildebrand et al. 1990) support the hypothesis that X. campestris does not constitute a single bacterial species. There were low levels of DNA-DNA reassociation among many of the different pathovars examined. Six clusters of related pathovars were discerned. In addition, four of the pathovars were only distantly related to each other and to the six clusters. Xanthomonas albilineans was not closely related to any of the other xanthomonads tested.
Mapping and superimposing the botanical families of the host plants upon a three-dimensional genomic distance matrix of the xanthomonads confirms previous observations that pathovars that infect plants of the same botanical family do not necessarily belong to the same genomic group. Six legume-infecting pathovars cluster within one genomic group, but one pathovar, X. cam. pv. pisi is only distantly related to this group. There was also no genomic relationship between X. cam. pv. oryzicola and X. albilineans both of which infect Gramineae. Consequently, pathogenicity toward members of the same plant family is not a good indicator of the genomic relationships among xanthomonads nor is it a good taxonomic determinant.  相似文献   

2.
Polymerase chain reaction (PCR) amplification was carried out with a primer pair targeting a sequence in the genome of Xanthomonas campestris pv. pelargonii , the causative agent of bacterial blight in geraniums. PCR amplification with the primer pair XcpMl/XcpM2 using total nucleic acid preparations from 22 geographicallydiverse isolates of X. campestris pv. pelargonii generated a major 197 bp DNA product. In contrast, no major amplification products were consistently generated from 12 other pathovars of X. campestris or from 19 isolates representing 10 different plant pathogenic bacteria, including two other bacterial pathogens of geraniums, Corynebacterium fascians and Pseudomonas cichorii . After PCR using this primer pair, between 1380 and 13800 copies of the X, campestris pv. pelargonii bacterial DNA target as template were detected by ethidium bromide staining of agarose gels, and between 13.8 and 138 copies by blot hybridization to a pathovar-specific biotinylated probe. Similarly, between 630 and 6300 colonyforming units (CFU) of X. campestris pv. pelargonii could be detected after ethidium bromide staining of agarose gels, and between 63 and 630 CFU after blot hybridization. The PCR-based assay was used to identify X. campestris pv. pelargonii in diseased geraniums; whereas discrete amplification products were not obtained with healthy plants.  相似文献   

3.
Strains of Xanthomonas campestris pathovars armoraciae and raphani, which cause leaf spotting diseases in brassicas, produce a major extracellular protease in liquid culture which was partially purified. The protease (PRT 3) was a zinc-requiring metalloenzyme and was readily distinguishable from the two previously characterized proteases (PRT 1 and PRT 2) of X. campestris pv. campestris by the pattern of degradation of beta-casein and sensitivity to inhibitors. PRT 3 was produced at a low level in the vascular brassica pathogen X. campestris pv. campestris (five strains tested), in which PRT 1 and PRT 2 predominate. In contrast, expression of PRT 1, a serine protease, could not be detected in the six tested strains of the leaf spotting mesophyll pathogens. However, all these strains had DNA fragments which hybridized to a prtA probe and which probably carry a functional prtA (the structural gene for PRT 1). The structural gene for PRT 3 (prtC) was cloned by screening a genomic library of X. campestris pv. raphani in a protease-deficient X. campestris pv. campestris strain. Subcloning and Tn5 mutagenesis located the structural gene to 1.2 kb of DNA. DNA fragments which hybridized to the structural gene were found in all strains of the crucifer-attacking X. campestris pathovars tested as well as in a number of other pathovars. Experiments in which the pattern of protease production of the pathovars was manipulated by introduction of cloned genes into heterologous pathovars suggested that no determinative relationship exists between the pattern of protease gene expression and the (vascular or mesophyllic) mode of pathogenesis.  相似文献   

4.
5.
A gene involved in quinate metabolism was cloned from Xanthomonas campestris pv. juglandis strain C5. The gene, qumA, located on a 4. 2-kb KpnI-EcoRV fragment in plasmid pQM38, conferred quinate metabolic activity to X. c. pv. celebensis. Tn3-spice insertional analyses further located the qumA gene on a region of about 3.0 kb within pQM38. Nucleotide sequencing of this 3.0-kb fragment reveals that the coding region of qumA is 2373 bp, the deduced amino acid sequence of which closely resembles a pyrrolo-quinoline quinone-dependent quinate dehydrogenase of Acinetobacter calcoaceticus. A 0.7 kb SalI-PstI fragment internal to qumA was used as a probe to hybridize against total genomic DNA from 43 pathovars of X. campestris. The fragment hybridized only to total genomic DNA from the four pathovars of DNA homology group 6, X. c. pv. celebensis, X. c. pv. corylina, X. c. pv. juglandis and X. c. pv. pruni, and from X. c. pv. carotae, which belongs to DNA homology group 5. This 0.7 kb fragment was also used as a probe to hybridize BamHI-digested total genomic DNAs from the four pathovars of DNA homology group 6 and X. c. pv. carotae. The restriction fragment length polymorphism pattern of DNA homology group 6 was different from that of X. c. pv. carotae. The probe hybridized to a 5.7-kb BamHI fragment in all four pathovars of group 6 and to a 6.1-kb BamHI fragment in three of four pathovars. It hybridized only to a 9. 9-kb BamHI fragment in X. c. pv. carotae. Quinate metabolism has previously been reported as a phenotypic property specific to X. campestris DNA homology group 6. Accordingly, a combination of the quinate metabolism phenotypic test and Southern hybridization using a qumA-derived probe will be very useful in the identification of pathovars in DNA homology group 6.  相似文献   

6.
The random amplified polymorphic DNA method was used to distinguish strains of Xanthomonas campestris pv. pelargonii from 21 other Xanthomonas species and/or pathovars. Among the 42 arbitrarily chosen primers evaluated, 3 were found to reveal diagnostic polymorphisms when purified DNAs from compared strains were amplified by the PCR. The three primers revealed DNA amplification patterns which were conserved among all 53 strains tested of X. campestris pv. pelargonii isolated from various locations worldwide. The distinctive X. compestris pv. pelargonii patterns were clearly different from those obtained with any of 46 other Xanthomonas strains tested. An amplified 1.2-kb DNA fragment, apparently unique to X. campestris pv. pelargonii by these random amplified polymorphic DNA tests, was cloned and evaluated as a diagnostic DNA probe. It hybridized with total DNA from all 53 X. campestris pv. pelargonii strains tested and not with any of the 46 other Xanthomonas strains tested. The DNA sequence of the terminal ends of this 1.2-kb fragment was obtained and used to design a pair of 18-mer oligonucleotide primers specific for X. campestris pv. pelargonii. The custom-synthesized primers amplified the same 1.2-kb DNA fragment from all 53 X. campestris pv. pelargonii strains tested and failed to amplify DNA from any of the 46 other Xanthomonas strains tested. DNA isolated from saprophytes associated with the geranium plant also did not produce amplified DNA with these primers. The sensitivity of the PCR assay using the custom-synthesized primers was between 10 and 50 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A gene cluster containing lexA, recA and recX genes was previously identified and characterized in Xanthomonas campestris pathovar citri (X. c. pv. citri). We have now cloned and sequenced the corresponding regions in the Xanthomonas campestris pv. campestris (X. c. pv. campestris) and Xanthomonas oryzae pathovar oryzae (X. o. pv. oryzae) chromosome. Sequence analysis of these gene clusters showed significant homology to the previously reported lexA, recA and recX genes. The genetic linkage and the deduced amino acid sequences of these genes displayed very high identity in different pathovars of X. campestris as well as in X. oryzae. Immunoblot analysis revealed that the over-expressed LexA protein of X. c. pv. citri functioned as a repressor of recA expression in X. c. pv. campestris, indicating that the recombinant X. c. pv. citri LexA protein was functional in a different X. campestris pathovar. The abundance of RecA protein was markedly increased upon exposure of X. c. pv. campestris to mitomycin C, and an upstream region of this gene was shown to confer sensitivity to positive regulation by mitomycin C on a luciferase reporter gene construct. A symmetrical sequence of TTAGTAGTAATACTACTAA present within all three Xanthomonas lexA promoters and a highly conserved sequence of TTAGCCCCATACCGAA present in the three regulatory regions of recA indicate that the SOS box of Xanthomonas strains might differ from that of Escherichia coli.  相似文献   

8.
A nutritional screen of 143 carbon sources was done on 88 strains of xanthomonads from 39 different Xanthomonas campestris pathovars, X. albilineans, X.fragariae , and ' X. gardneri '. Six compounds, cellobiose, fructose, fumarate, glucose, L-malate and succinate supported growth of all strains except X. albilineans , whereas 92 substrates were not utilized by any strain. Substrate utilization patterns appeared sufficiently uniform among the various genomic groups within Xanthomonas to allow their differentiation. The most easily distinguished pathovars were X. cam . pv. oryzicola and X. cam. secalis of genomic groups 4 and 3, respectively, because they used few substrates. Genomic group 1 was the most difficult to distinguish because utilization patterns differed substantially among the pathovars that comprise the group. Substrate utilization was useful for distinguishing pathovars within genomic groups. For example, X. campestris pv. pelargonii of genomic group 5 was differentiated from X. cam. carotae, X. cam. taraxaci , and ' X. gardneri ' by growth on aconitate but not D-tartrate. Similarly, use of D-tartrate differentiated X. celebensis from X. cam. pv. juglandis within group 6. Sorbitol was utilized only by X. cam. pv. plantaginis of group 2 and arabitol was a useful substrate for identifying X. cam. pv. pisi and pv. eucalypti . Most patterns of carbon utilization were confirmed with Biolog tests but there were exceptions as was found with utilization of glycerol and D-arabitol. The Biolog test also revealed some differences in carbon utilization not detected by standard tests of carbon substrates. It is concluded that nutritional screening has promise for identifying genomic groups and various pathovars within the genus Xanthomonas .  相似文献   

9.
The chemotaxis towards sucrose and yeast extract of nine strains of Xanthomonas campestris representing pathovars campestris, armoraciae, translucens, vesicatoria, and pelargonii was analyzed by using swarm plates. Unexpectedly, each of these strains formed small or reduced swarms typical of nonmotile or nonchemotactic bacteria. With time, however, chemotactic cells appeared on the swarm plates as blebs of bacteria. These cells were strongly chemotactic and were concomitantly deficient in exopolysaccharide production. The switch from the wild type (exopolysaccharide producing and nonchemotactic) to the swarmer type (exopolysaccharide deficient and chemotactic) appeared irreversible ex planta in bacteriological medium. However, in radish leaves swarmer-type strains of X. campestris pv. campestris were able to revert to the wild type. Swarmer-type derivatives of two X. campestris pv. campestris wild-type isolates showed reduced virulence and growth in the host plants cauliflower and radish. However, exocellular complementation of X. campestris pv. campestris Hrp (nonpathogenic) mutant was achieved by coinoculation with a swarmer-type strain.  相似文献   

10.
Thirty-five Xanthomonas campestris pv. oryzae, fourteen X. campestris pv. oryzicola strains and six 'brown blotch' pathogens of rice, all of different geographical origin, were studied by numerical analysis of 133 phenotype features and gel electrophoregrams of soluble proteins, %G + C determinations and DNA:rRNA hybridizations. The following conclusions were drawn. (i) The Xanthomonas campestris pathovars oryzae and oryzicola display clearly distinct protein patterns on polyacrylamide gels and can be differentiated from each other by four phenotype tests. (ii) Both pathovars are indeed members of Xanthomonas which belongs to a separate rRNA branch of the second rRNA superfamily together with the rRNA branches of Pseudomonas fluorescens, Marinomonas, Azotobacter, Azomonas and Frateuria. (iii) 'Brown blotch' strains are considerably different from X. campestris pv. oryzae and oryzicola. They are not members of the genus Xanthomonas, but are more related to the generically misnamed. Flavobacterium capsulatum, Pseudomonas paucimobilis, Flavobacterium devorans and 'Pseudomonas azotocolligans' belonging in the fourth rRNA superfamily. (iv) No correlation was found between the virulence, pathogenic groups or geographical distribution of X. campestris pv. oryzae or oryzicola strains and any phenotypic or protein electrophoretic property or clustering.  相似文献   

11.
Xanthomonas campestris pv. graminis and X. campestris pv. phlei isolated from different grass-species were analysed for their fatty acid content with a gas-chromatograph and a commerially-available software package. The two pathovars could be rapidly and reliably identified and separated from each other with this technique, offering alternative to time-consuming identification by biochemical and pathogenicity tests.  相似文献   

12.
13.
14.
Strains of Xanthomonas campestris pv. pruni obtained from Prunus armeniaca. P. domestica, P. persica and P. salicina in different geographical areas were compared for pathogenicity, fatty acid and wholecell protein analysis. Four strains, one per each host plant, were inoculated at the same time, on the foliage of P. armeniaca, P. avium, P. persica and P. salicina cultivars . Mean content of fatty acids of X.c. pv. pruni strains were also compared with those of many strains of X.c. pv. campestris , pv. graminis , pv. hyacinthii , pv. pelargonii and pv. vasculorum. Strains showed a remarkable homogeneity in fatty acids content and whole-cell protein profiles and principal component and cluster analysis did not reveal any grouping according to original host or geographical origin. However, X.c . pv. pruni strains can be grouped apart from the other X. campestris pathovars. There appears to be no pathogenic specialization among the strains tested, however, they varied in aggressiveness to host plants and host plant in susceptibility. The most of the strains were able to cross-infect species other that from where they were originally isolated, although, P. avium did not show any symptom of disease. P. persica cv. Sentry and P. salicina cv. Globe Sun, recently licensed as resistant to X.c. pv. pruni. were infected, although to a lesser extent, by some strains.  相似文献   

15.
T. Oku    Y. Wakasaki    N. Adachi    C. I. Kado    K. Tsuchiya  T. Hibi 《Journal of Phytopathology》1998,146(4):197-200
Xanthomonas campestris pv. campestris and X. oryzae pv, oryzae contain the 1428 base pair hrpX gene whose product is involved in the regulation oi hrp genes required for pathogericity, non-host hypersensitivity and non-permissibility of compatible host defence responses. Previous Southern blot hybridization studies have suggested that hrpX is conserved in several X. campestris pathovars and X. oryzae. strains. We have confirmed and extended these findings using hrpX gene amplification by polymerase chain reaction, coupled with Southern blot hybridization analyses. Sixteen distinct pathovars of X. campestris and 12 strains of X. oryzae pv, oryzae were shown to contain homologs of hrpX which were not apparent in heterologous bacteria such as Agrobacterium tumefaciens, A. rhizogenes, Erwinia carolovora ssp. carotovora, Pseudomonas syringae pv, glycinea. P. syringae pv, labaci , and Escherichia coli. The hrpX gene is therefore highly conserved among Xanthomonas species and its gene product strongly resembles positive regulatory proteins of the AraC protein family,  相似文献   

16.
The molecular basis of pathogenesis by Xanthomonas oryzae pv. oryzae has been partly elucidated by the identification of a gene, hrpXo, required for bacterial blight on rice. A mutation in hrpXo results in the loss of pathogenicity on rice and the loss of hypersensitivity on nonhosts such as Datura stramonium and radishes. Pathogenicity and its ability to cause the hypersensitive reaction is restored by complementing the mutant with the heterologous hrpXc gene derived from X. campestris pv. campestris. Conversely, hrpXo complements nonpathogenic mutants of X. campestris pv. campestris and X. campetstris pv, armoraciae. Mutants bearing the heterologous hrpX gene are restored in their abilities to cause diseases typical of their chromosomal background and not the hypersensitive reaction on their respective hosts. The hrpXo and hrpXc genes are therefore functionally equivalent, and this functional equivalence extends into X. campestris pv. armoraciae and possibly into other X. campestris pathovars, since this gene is highly conserved among eight other pathovars tested. Sequence analyses of hrpXo revealed an open reading frame of 1,452 bp with a coding capacity for a protein of 52.3 kDa. The protein contains a consensus domain for possible protein myristoylation whose consequence may result in a loss of recognition by host defense and surveillance systems.  相似文献   

17.
AIMS: Isolation and characterization of the xanthan-degrading Microbacterium sp. XT11. METHODS AND RESULTS: The bacterial isolate XT11, capable of fragmenting xanthan, has been isolated from soil sample. Morphological and biochemical analyses, as well as 16S rRNA gene sequence comparisons, demonstrated that strain XT11 should be grouped in the genus Microbacterium, and represented a new member in this family. Xanthan could be degraded by the xanthan-degrading enzyme released from strain XT11. It has been shown that xantho-oligosaccharides fragmented from xanthan had both elicitor activity and antibacterial effect against Xanthomonas campestris pv. campestris. CONCLUSIONS: The xanthan-degrading enzyme produced by the newly isolated XT11 could fragment xanthan to form oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: Xanthan-degrading products would be useful for potential application in the control of black rot of cruciferous plants caused by X. campestris pv. campestris and, as an oligosaccharide elicitor, in making these plants resistant to disease.  相似文献   

18.
Extracts of 13 Brazilian medicinal plants were screened for their antimicrobial activity against bacteria and yeasts. Of these, 10 plant extracts showed varied levels of antibacterial activity. Piper regnellii presented a good activity against Staphylococus aureus and Bacillus subtilis, a moderate activity on Pseudomonas aeruginosa, and a weak activity against Escherichia coli. Punica granatum showed good activity on S. aureus and was inactive against the other standard strains. Eugenia uniflora presented moderate activity on both S. aureus and E. coli. Psidium guajava,Tanacetum vulgare, Arctium lappa, Mikania glomerata, Sambucus canadensis, Plantago major and Erythrina speciosa presented some degree of antibacterial activity. Spilanthes acmella, Lippia alba, and Achillea millefolium were considered inactive. Five of the plant extracts presented compounds with Rf values similar to the antibacterial compounds visible on bioautogram. Of these, three plants belong to the Asteraceae family. This may mean that the same compounds are responsible for the antibacterial activity in these plants. Anticandidal activity was detected in nine plant extracts (P. guajava, E. uniflora, P. granatum, A. lappa, T. vulgare, M. glomerata, L. alba, P. regnellii, and P. major). The results might explain the ethnobotanical use of the studied species for the treatment of various infectious diseases.  相似文献   

19.
Plant-derived natural bactericides and their possible applications in agriculture to control plant bacterial diseases has intensified as this approach has enormous potential to inspire and influence modern agro-chemical research. Naturally occurring and biologically active plant products such as essential oils and organic extracts could be a source of alternative classes of natural biopesticides to serve as templates for new and more effective compounds in controlling plant pathogenic micro-organisms. In the present study, the efficacy of six plants extracts from different solvent system were tested for their antibacterial activity aganist Xanthomonas oryzae pv. oryzae both in vitro and in vivo. Among these extracts, Cocculus hirsutus leaf chloroform extract exhibits significant antibacterial activity against X. oryzae pv. oryzae. Data obtained from the experiments such as minimum inhibitory concentration, effect of C. hirsutus leaf chloroform extract on the incidence of X. oryzae pv. oryzae, phytotoxicity test and effect of C. hirsutus leaf chloroform extract on seed germination and seedling vigour, along with the in vivo experiments under greenhouse conditions showed significant improvement over controls. Thus, the present study demonstrated that the C. hirsutus leaf chloroform extract posses antibacterial activity against bacterial leaf blight pathogen of rice.  相似文献   

20.
Cercosporin is a non-host-specific polyketide toxin produced by many species of plant pathogens belonging to the genus Cercospora. This red-pigmented, light-activated toxin is an important pathogenicity determinant for Cercospora species. In this study, we screened 244 bacterial isolates representing 12 different genera for the ability to degrade cercosporin. Cercosporin degradation was determined by screening for the presence of cleared zones surrounding colonies on cercosporin-containing culture medium and was confirmed by assaying the kinetics of degradation in liquid medium. Bacteria belonging to four different genera exhibited the cercosporin-degrading phenotype. The isolates with the greatest cercosporin-degrading activity belonged to Xanthomonas campestris pv. zinniae and X. campestris pv. pruni. Isolates of these pathovars removed over 90% of the cercosporin from culture medium within 48 h. Bacterial degradation of red cercosporin was accompanied by a shift in the color of the growth medium to brown and then green. The disappearance of cercosporin was accompanied by the appearance of a transient green product, designated xanosporic acid. Xanosporic acid and its more stable lactone derivative, xanosporolactone, are nontoxic to cercosporin-sensitive fungi and to plant tissue and are labile in the presence of light. Detailed spectroscopic analysis (to be reported in a separate publication) of xanosporolactone revealed that cercosporin loses one methoxyl group and gains one oxygen atom in the bacterial conversion. The resulting chromophore (4,9-dihydroxy-3-oxaperlylen-10H-10-one) has never been reported before but is biosynthetically plausible via oxygen insertion by a cytochrome P-450 enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号