首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
HER-2/neu oncoprotein is overexpressed in a variety of human tumors and is associated with malignant transformation and aggressive disease. Due to its overexpression in tumor cells and because it has been shown to be immunogenic, this protein represents an excellent target for T-cell immunotherapy. Peptide extracts derived from primary HLA-A*0201-positive (+) HER-2/neu+ human tumors by acid elution (acid cell extracts (ACEs)) were tested for their capacity to elicit in HLA-A*0201 transgenic mice, cytotoxic T lymphocytes (CTLs) lysing HLA-A*0201+ HER-2/neu+ tumor cells. Injections of ACE in transgenic mice induced CTLs capable of specifically lysing HER-2/neu+ tumor cell lines (also including the original HER-2/neu+ primary tumor cells from which the ACEs were derived) in an HLA-A*0201–restricted fashion. Adoptive transfer of ACE-induced CTLs was sufficient to significantly prolong survival of SCID mice inoculated with HLA-A*0201+ HER-2/neu+ human tumor cell lines. Cytotoxicity of such ACE-induced CTL lines was directed, at least as detected herein, also against the HER-2/neu peptides HER-2 (9369) and HER-2 (9435) demonstrating the immunodominance of these epitopes. HER-2 peptide–specific CTLs generated in the HLA-A*0201–transgenic mice, upon peptide immunization, lysed in vitro HER-2/neu+ human tumor cell lines in an HLA-A*0201–restricted manner and, when adoptively transferred, conferred sufficient protection in SCID mice inoculated with the same human tumor cell lines as above. However, CTLs induced by ACEs displayed enhanced efficacy in the therapy of xenografted SCID mice compared with the HER-2 peptide–specific CTLs (i.e., HER-2 [9369] or HER-2 [9435]). Even by administering mixtures of CTLs specific for each of these peptides, the prolongation of survival achieved was still inferior compared with that obtained with ACE-induced CTLs. This suggested that additional epitopes may contribute to the immunogenicity of such tumor-derived ACEs. Thus, immunization with ACEs from HER-2/neu+ primary tumor cells appears to be an effective approach to generate multiple and potent CTL-mediated immune responses against HER-2/neu+ tumors expressing the appropriate HLA allele(s). By screening ACE-induced CTL lines with synthetic peptides encompassing the HER-2/neu sequence, it is feasible to identify immunodominant epitopes which may be used in mixtures as vaccines with enhanced efficacy in both the prevention and therapy of HER-2/neu+ malignancies.This work was supported by grants from the Regional Operational Program Attika (No. 20, MIS code 59605GR) to M.P., and from the GSRT Program (No. PENED 01ED55) to C.N.B.  相似文献   

2.
HER-2/neu is an immunogenic protein eliciting both humoral and cellular immune responses in patients with HER-2/neu-positive (+) tumors. Preexisting cytotoxic T lymphocyte (CTL) immunity to HER-2/neu has so far been mainly evaluated in terms of detection of CTL precursor (CTLp) frequencies to the immunogenic HLA-A2–binding nona-peptide 369-377 (HER-2(9369)). In the present study, we examined patients with HER-2/neu+ breast, ovarian, lung, colorectal, and prostate cancers for preexisting CTL immunity to four recently described HER-2/neu–derived and HLA-A2–restricted "cytotoxic" peptides and to a novel one spanning amino acids 777–785 also with HLA-A2–binding motif. We utilized enzyme-linked immunosorbent spot (ELISpot) assay, which allows a quantitative and functional assessment of T cells directed against specific peptides after only brief in vitro incubation. CTL reactivity was determined with an interferon (IFN-) ELISpot assay detecting T cells at the single cell level secreting IFN-. CTLp were defined as peptide-specific precursors per 106 peripheral blood mononuclear cells (PBMCs). Patients' PBMCs with increased CTLp were also tested against autologous tumor targets and peptide-pulsed dendritic cells (DCs) in cytotoxicity assays. We also studied patients with HER-2/neu-negative (-) tumors and healthy individuals. Of the HER-2/neu+ patients examined, 31% had increased CTLp to HER-2(9952), 19% to HER-2(9665), 16% to HER-2(9689), and 12.5% HER-2(9435), whereas only 2 of 32 patients (6%) responded to HER-2(9777). The CTLp recognizing HER-2(9952) were extremely high in two patients with breast cancer, one with lung cancer, and one with prostate cancer. None of the HER-2/neu- patients or healthy donors exhibited increased CTLp to any of these peptides. Besides IFN- production, preexisting CTL immunity to all five HER-2/neu peptides was also shown in cytotoxicity assays where patients' PBMCs with increased CTLp specifically lysed autologous tumor targets and autologous peptide-pulsed DCs. Our results demonstrate for the first time that (1) preexisting immunity to peptides HER-2(9435), HER-2(9952), HER-2(9689), HER-2(9665), and HER-2(9777) is present in patients with HER-2/neu+ tumors of distinct histology, (2) HER-2(9777) is a naturally processed peptide expressed on the surface of HER-2/neu+ tumors, as are the other four peptides, and (3) HER-2/neu+ prostate tumor cells can be recognized and lysed by autologous HER-2 peptide-specific CTL. Our findings broaden the potential application of HER-2/neu-based immunotherapy.  相似文献   

3.
Liu W  Zhai M  Wu Z  Qi Y  Wu Y  Dai C  Sun M  Li L  Gao Y 《Amino acids》2012,42(6):2257-2265
Identification of cytotoxic T lymphocyte (CTL) epitopes from tumor antigens is essential for the development of peptide vaccines against tumor immunotherapy. Among all the tumor antigens, the caner-testis (CT) antigens are the most widely studied and promising targets. PLAC1 (placenta-specific 1, CT92) was considered as a novel member of caner-testis antigen, which expressed in a wide range of human malignancies, most frequently in breast cancer. In this study, three native peptides and their analogues derived from PLAC1 were predicted by T cell epitope prediction programs including SYFPEITHI, BIMAS and NetCTL 1.2. Binding affinity and stability assays in T2 cells showed that two native peptides, p28 and p31, and their analogues (p28-1Y9?V, p31-1Y2L) had more potent binding activity towards HLA-A*0201 molecule. In ELISPOT assay, the CTLs induced by these four peptides could release IFN-γ. The CTLs induced by these four peptides from the peripheral blood mononuclear cells (PBMCs) of HLA-A*02+ healthy donor could lyse MCF-7 breast cancer cells (HLA-A*0201+, PLAC1+) in vitro. When immunized in HLA-A2.1/Kb transgenic mice, the peptide p28 could induce the most potent peptide-specific CTLs among these peptides. Therefore, our results indicated that the peptide p28 (VLCSIDWFM) could serve as a novel candidate epitope for the development of peptide vaccines against PLAC1-positive breast cancer.  相似文献   

4.
STEAP is a recently identified protein shown to be particularly overexpressed in prostate cancer and also present in numerous human cancer cell lines from prostate, pancreas, colon, breast, testicular, cervical, bladder and ovarian carcinoma, acute lymphocytic leukemia and Ewing sarcoma. This expression profile renders STEAP an appealing candidate for broad cancer immunotherapy. In order to investigate if STEAP is a tumor antigen that can be targeted by specific CD8+ T cells, we identified two high affinity HLA-A*0201 restricted peptides (STEAP86–94 and STEAP262–270). These peptides were immunogenic in vivo in HLA-A*0201 transgenic HHD mice. Peptide specific murine CD8 T cells recognized COS-7 cells co-transfected with HHD (HLA-A*0201) and STEAP cDNA constructs and also HLA-A*0201+ STEAP+ human tumor cells. Furthermore, STEAP86–94 and STEAP262–270 stimulated specific CD8+ T cells from HLA-A*0201+ healthy donors, and these peptide specific CD8+ T cells recognized STEAP positive human tumor cells in an HLA-A*0201-restricted manner. Importantly, STEAP86–94-specific T cells were detected and reactive in the peripheral blood mononuclear cells in NSCLC and prostate cancer patients ex vivo. These results show that STEAP can be a target of anti-tumor CD8+ T cells and that STEAP peptides can be used for a broad-spectrum-tumor immunotherapy.  相似文献   

5.
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2+ tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369–377, 435–443 and 689–697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4+ T cells and antibodies are important components. S. Vertuani and C. Triulzi contributed equally to this work.  相似文献   

6.
HER-2/neu oncoprotein is overexpressed in a variety of human tumors and is associated with aggressive disease. Immunogenic HER-2/neu CTL epitopes have been used as vaccines for the treatment of HER-2/neu positive malignancies with limited success. By applying prediction algorithms for MHC class I ligands and proteosomal cleavages, in this study, we describe the identification of HER-2/neu decamer LIAHNQVRQV spanning residues 85-94 (HER-2(10(85))). HER-2(10(85)) proved to bind with high affinity to HLA-A2.1 and was stable for 4 h in an off-kinetics assay. This peptide was immunogenic in HLA-A2.1 transgenic (HHD) mice inducing peptide-specific CTL, which responded to tumor cell lines of various origin coexpressing human HER-2/neu and HLA-A2.1. This demonstrates that HER-2(10(85)) is naturally processed from endogenous HER-2/neu. Five of sixteen HER-2/neu+ HLA-A2.1+ breast cancer patients analyzed had HER-2(10(85))-reactive T cells ranging from 0.35-0.70% of CD8+ T cells. Depletion of T regulatory cells from PBMC enabled the rapid expansion of HLA-A2.1/HER-2(10(85))pentamer+/CD8+ cells (PENT+/CD8+), whereas significantly lower numbers of CTL could be generated from unfractionated PBMC. HER-2(10(85))-specific human CTL recognized the HER-2/neu+ HLA-A2.1+ tumor cell line SKBR3.A2, as determined by IFN-gamma intracellular staining and in the high sensitivity CD107alpha degranulation assay. Finally, HER-2(10(85)) significantly prolonged the survival of HHD mice inoculated with the transplantable ALC.A2.1.HER tumor both in prophylactic and therapeutic settings. These data demonstrate that HER-2(10(85)) is an immunogenic peptide, capable of eliciting CD8-mediated responses in vitro and in vivo, providing the platform for further exploitation of HER-2(10(85)) as a possible target for anticancer immunotherapy.  相似文献   

7.
Trypanosoma cruzi-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of parasite growth and will play an important part in therapeutic and prophylactic T. cruzi vaccines. The identification of parasite-specific epitopes that are efficiently recognized by CTLs is the first step in the development of future vaccines. HLA-A2 transgenic mice (HHD) were shown to provide a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, since these mice are endowed with a CTL repertoire representative of HLA-A2.1 individuals. Here, we describe the immunological characterization of T-cell epitopes of the T. cruzi ribosomal P2 protein (TcP2beta) that are recognized by HLA-A*0201-restricted CTLs in HLA-transgenic mice and humans. Epitopes identified in the present study do not share sequence homology with the homologous human or murine counterparts and so they should not induce any autoreactive response. Moreover, HHD mice vaccinated with these peptide epitopes have reduced parasitemia after challenge with a lethal T. cruzi infection. Hence, these epitopes represent potential subunit components of multi-protein vaccines to prevent Chagas' disease.  相似文献   

8.
Tolerance to tumor-nonmutated self proteins represents a major obstacle for successful cancer immunotherapy. Since this tolerance primarily concerns dominant epitopes, we hypothesized that targeting cryptic epitopes that have a low affinity for HLA could be an efficient strategy to breach the tolerance to tumor Ags. Using the P1Y heteroclitic peptide approach, we identified low affinity cryptic HLA-A*0201-restricted epitopes derived from two widely expressed tumor Ags, HER-2/neu and hTERT. The P1Y variants of four HER-2/neu (neu(391), neu(402), neu(466), neu(650))- and two hTERT (hTERT(572) and hTERT(988))-derived low affinity peptides exhibited strong affinity for HLA-A*0201 and stimulated specific CTL from healthy donor PBMCs. These CTL specifically recognized HER-2/neu- and hTERT-expressing tumor cells of various histological origins. In vivo studies showed that HLA-A*0201 transgenic HHD mice vaccinated with the P1Y variant peptides generated CTL that specifically lysed Ag-expressing tumor cells, thus recognizing the cognate endogenous Ags. These results suggest that heteroclitic variants of low affinity, cryptic epitopes of widely expressed tumor Ags may serve as valid tools for tumor immunotherapy.  相似文献   

9.
Disrupting tumor-mediated mechanisms suppressing host immunity represents a novel approach to tumor immunotherapy. Depletion of regulatory T cells (Tregs) increases endogenous anti-tumor immunity and the efficacy of active immunotherapy in experimental tumor models. HLA-A2.1/HLA-DR1 (A2.1/DR1) × BALB- neuT + (neuT +) triple transgenic mice represent an improvement over neuT + mice for evaluating vaccination regimens to overcome tolerance against HER-2/neu. We questioned whether depletion of Tregs with Denileukin diftitox (Ontak) enhances the efficacy of a therapeutic vaccine consisting of HER-2(85–94) (p85) CTL and HER-2(776–790) (p776) Th peptides against the growth of TUBO.A2 transplantable tumor in male A2.1/DR1 × neuT + Tg mice. While the therapeutic vaccine primed the tumor-reactive CD8+ CTLs and CD4+ effector T lymphocytes (Teffs) compartment, inducing activation, tumor infiltration, and tumor rejection or delay in tumor growth, treatment with Ontak 1 day prior to vaccination resulted in enhanced CD4+ and CD8+ T-cell-mediated vaccine-specific immune responses in the periphery. This was closely associated with greater infiltration and a striking change in the intratumor balance of Tregs and vaccine-specific CTLs/Teffs that directly correlated with markedly enhanced antitumor activity. The data suggest that Tregs control both CD4+ and CD8+ T-cell activity within the tumor, emphasize the importance of the intratumor ratio of vaccine-specific lymphocytes to Tregs, and demonstrate significant inversion of this ratio and correlation with tumor rejection during Ontak/vaccine immunotherapy.  相似文献   

10.
11.
Conventional treatment of recurrent and metastasized prostate cancer (CaP) remains inadequate; this fact mandates development of alternative therapeutic modalities, such as specific active or passive immunotherapy. Previously, we reported the identification of a novel highly immunogenic HLA-A*0201-restricted Prostatic Acid Phosphatase-derived peptide (PAP-3) by a two-step in vivo screening in an HLA-transgenic (HHD) mouse system. In the present study we aimed at elucidating the efficiency of PAP-3-based vaccine upon active antitumor immunization. To this end we established preventive and therapeutic carcinoma models in HHD mice. The 3LL murine Lewis lung carcinoma clone D122 transduced to express HLA-A*0201 and PAP served as a platform for these models. The HLA-A*0201–PAP-3 complex specific recombinant single chain scFV-PAP-3 antibodies were generated and used to confirm an endogenous PAP processing resulting in PAP-3 presentation by HLA-A*0201. PAP-3 based vaccines significantly decreased tumor incidence in a preventive immunization setting. Therapeutic vaccination of HHD mice with PAP-3 led to rejection of early established tumors and to increase of mouse survival. These results strongly support a therapeutic relevance of the identified CTL epitope upon active antitumor immunization. The newly established carcinoma model presented herein might be a useful tool for cancer vaccine design and optimization.  相似文献   

12.
Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.  相似文献   

13.
In this study, we developed two Her-2/neu-derived E75 altered peptide ligands (APLs) that demonstrate increased affinities for the HLA-A*0201 allele compared with wild-type E75 peptide. The APLs contain amino acids from E75(369–377), an immunodominant Her-2/neu-derived peptide, and preferred primary and auxiliary HLA-A*0201 molecule anchor residues previously identified from combinatorial peptide library screening with the recombinant molecule. CTL lines were generated against wild-type E75 peptide (KIFGSLAFL) and APLs by multiple rounds of peptide stimulation of peripheral blood mononuclear cells (PBMCs) from HLA-A2+ antigen normal individuals. CTL lines raised on wild-type E75 peptide cross-reacted with APLs and similarly, CTL lines raised on APLs cross-reacted with wild-type E75 peptide, as measured by IFN- ELISpot and target cell lysis assays. One of five individuals demonstrated specificity for APL 2 (FLFGSLAFL), whereas APL 5 (FLFESLAFL)-specific responses were observed from all five individuals tested. Molecular models of the E75, APL 2, and APL 5/HLA-A2 complexes indicated that the substitution of glycine with glutamic acid at position four of APL 5 resulted in the presentation of a large, negatively charged side chain that interacts with the outer edge of the HLA-A2 antigen alpha helix and is freely available to interact with cognate T-cell receptors. The results of this study further substantiate the concept that rational design of T-cell epitopes may lead to stronger peptide immunogens than natural, wild-type peptides.  相似文献   

14.
Human Papillomavirus 16 (HPV-16) has been identified as the causative agent of 50% of cervical cancers and many other HPV-associated tumors. The transforming potential/tumor maintenance capacity of this high risk HPV is mediated by two viral oncoproteins, E6 and E7, making them attractive targets for therapeutic vaccines. Of 21 E6 and E7 peptides computed to bind HLA-A*0201, 10 were confirmed through TAP-deficient T2 cell HLA stabilization assay. Those scoring positive were investigated to ascertain which were naturally processed and presented by surface HLA molecules for CTL recognition. Because IFNγ ELISpot frequencies from healthy HPV-exposed blood donors against HLA-A*0201-binding peptides were unable to identify specificities for tumor targeting, their physical presence among peptides eluted from HPV-16-transformed epithelial tumor HLA-A*0201 immunoprecipitates was analyzed by MS3 Poisson detection mass spectrometry. Only one epitope (E711–19) highly conserved among HPV-16 strains was detected. This 9-mer serves to direct cytolysis by T cell lines, whereas a related 10-mer (E711–20), previously used as a vaccine candidate, was neither detected by MS3 on HPV-transformed tumor cells nor effectively recognized by 9-mer specific CTL. These data underscore the importance of precisely defining CTL epitopes on tumor cells and offer a paradigm for T cell-based vaccine design.  相似文献   

15.
Identification of cytotoxic T lymphocyte (CTL) epitopes from additional tumor antigens is essential for the development of specific immunotherapy of malignant tumors. CML28, a recently discovered cancer-testis (CT) antigen from chronic myelogenous leukemia, is considered to be a promising target of tumor-specific immunotherapy. Because HLA-A*0201 is one of the most common histocompatibility molecule in Chinese, we aim at identifying CML28 peptides presented by HLA-A*0201. A panel of CML28-derived antigenic peptides was predicted using a computer-based program. Four peptides with highest predicted score were synthesized and tested for their binding affinities to HLA-A*0201 molecule. Then these peptides were assessed for their immunogenicity to elicit specific immune responses mediated by CTLs both in vitro, from PBMCs sourced from four healthy HLA-A*0201+ donors, and in vivo, in HLA-A*0201 transgenic mice. One of the tested peptides, CML28(173–181), induced peptide-specific CTLs in vitro as well as in vivo, which could specifically secrete IFN-γ and lyse major histocompatibility complex (MHC)-matched tumor cell lines endogenously expressing CML28 antigen and CML28(173–181) pulsed Jurkat-A2/Kb cells, respectively. These results demonstrate that CML28(173–181) is a naturally processed and presented CTL epitope with HLA-A*0201 motif and has a promising immunogenicity both in vitro and in vivo. As CML28 is expressed in a large variety of histological tumors besides chronic myelogenous leukemia, we propose that the newly identified epitope, CML28(173–181), would be of potential use in peptide-based, cancer-specific immunotherapy against a broad spectrum of tumors.  相似文献   

16.
MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 are expressed in a significant proportion of primary and metastatic tumors of various histological types and are targets of tumor Ag-specific CTL. Individual MAGE-A expression varies from one tumor type to the other but, overall, the large majority of tumors expresses at least one MAGE-A Ag. Therefore, targeting epitopes shared by all MAGE-A Ags would be of interest in immunotherapy against a broad spectrum of cancers. In the present study, we describe a heteroclitic MAGE-A peptide (p248V9) that induces CTL in vivo in HLA-A*0201 transgenic HHD mice and in vitro in healthy donors. These CTL are able to recognize two low HLA-A*0201 affinity peptides differing at their C-terminal position and derived from MAGE-A2, -A3, -A4, -A6, -A10, and -A12 (p248G9) and MAGE-A1 (p248D9). Interestingly, p248V9-specific CTL respond to endogenous MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 in an HLA-A*0201-restricted manner and recognize human HLA-A*0201(+)MAGE-A(+) tumor cells of various histological origin. Therefore, this heteroclitic peptide may be considered as a potent candidate for a broad-spectrum tumor vaccination.  相似文献   

17.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

18.
Leptospirosis is an important zoonosis in humans. Immunity against leptospiral infection was thought to be primarily humoral, and limited studies have addressed the role of CD8+ T cells. Leptospiral immunoglobulin-like protein A (LigA) is an important protective antigen of Leptospira and a potential target for Leptospira-specific cell-mediated immunity. In this study, twenty LigA-derived peptides were tested their binding affinity and stability for the HLA-A*0201 molecule. Peptides with high binding affinity and stability for HLA-A*0201 were then assessed their capacity to elicit specific cytotoxic T-lymphocyte (CTL) responses using cytotoxicity, ELISPOT assays for IFN-γ and HLA-A*0201-peptide tetramer assays. We identified a HLA-A*0201-restricted epitope, LigA305–313 KLIVTPAAL in Leptospira LigA. CTLs specific for LigA305–313 were elicited both in HLA-A2.1/Kb transgenic mice and in patients with a clinical and/or laboratory diagnosis of leptospirosis. Staining of the HLA-A*0201–LigA305–313 tetramer revealed the presence of LigA305–313-specific CTLs in peripheral blood mononuclear cells (PBMCs) sourced from five patients infected with three different serovars of Leptospira. In conclusion, we report the existence of specific cytotoxic CD8+ T cells in patients with leptospirosis and we suggest that the newly identified epitope, LigA305–313, will be helpful in enhancing the understanding of the mechanism of immunity to leptospirosis.  相似文献   

19.
Melanoma-reactive HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) lines generated in vitro lyse autologous and HLA-matched allogeneic melanoma cells and recognize multiple shared peptide antigens from tyrosinase, MART-1, and Pmel17/gp100. However, a subset of melanomas fail to be lysed by these T cells. In the present report, four different HLA-A*0201+ melanoma cell lines not lysed by melanoma-reactive allogeneic CTL have been evaluated in detail. All four are deficient in expression of the melanocytic differentiation proteins (MDP) tyrosinase, Pmel17/gp100, gp75/trp-1, and MART-1/Melan-A. This concordant loss of multiple MDP explains their resistance to lysis by melanoma-reactive allogeneic CTL and confirms that a subset of melanomas may be resistant to tumor vaccines directed against multiple MDP-derived epitopes. All four melanoma lines expressed normal levels of HLA-A*0201, and all were susceptible to lysis by xenoreactive-peptide-dependent HLA-A*0201-specific CTL clones, indicating that none had identifiable defects in antigen-processing pathways. Despite the lack of shared MDP-derived antigens, one of these MDP-negative melanomas, DM331, stimulated an effective autologous CTL response in vitro, which was restricted to autologous tumor reactivity. MHC-associated peptides isolated by immunoaffinity chromatography from HLA-A1 and HLA-A2 molecules of DM331 tumor cells included at least three peptide epitopes recognized by DM331 CTL and restricted by HLA-A1 or by HLA-A*0201. Recognition of these CTL epitopes cannot be explained by defined, shared melanoma antigens; instead, unique or undefined antigens must be responsible for the autologous-cell-specific anti-melanoma response. These findings suggest that immunotherapy directed against shared melanoma antigens should be supplemented with immunotherapy directed against unique antigens or other undefined antigens, especially in patients whose tumors do not express MDP. Received: 31 October 1997 / Accepted: 4 August 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号