首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

2.
Respiratory chain-linked NADH dehydrogenase. Mechanisms of assembly   总被引:1,自引:0,他引:1  
The assembly of mitochondrially and cytoplasmically translated subunits of NADH dehydrogenase in the inner mitochondrial membrane was studied in rat hepatoma cultures. A polyclonal antibody to the purified bovine heart holoenzyme, which reacted with comigrating proteins of both rat liver and hepatoma mitochondria on immunoblots, precipitated 25-30 [35S]methionine-labeled proteins from hepatoma cell lysates. Six of these were sensitive to an inhibitor of mitochondrial translation (chloramphenicol), resistant to an inhibitor of cytosolic translation (cycloheximide), and were not present in cytochrome oxidase. By these criteria, six NADH dehydrogenase subunits are identified as being translated on mitochondrial ribosomes. The metabolic properties of the three most prominent of these at 51, 43, and 11 kDa were studied in more detail. Mitochondrial and nuclear-coded polypeptides assemble into NADH dehydrogenase at different rates as measured by incorporation of pulse-labeled proteins into immunoprecipitable enzyme. Nuclear-coded, imported polypeptides appear immediately after a pulse with [35S]methionine and retain constant stoichiometry. Mitochondrially coded proteins, although rapidly translated, appear at peak levels at different times between 0 and 12 h of chase in the immunoprecipitated enzyme. Ongoing synthesis and import of nuclear-coded proteins is necessary for mitochondrially coded proteins to be assembled. Excess, unassembled mitochondrially translated subunits are degraded in an oligomycin-sensitive manner. These data are consistent with a model in which a scaffold of imported proteins forms the inner core of the enzyme, and later arriving mitochondrially translated proteins attach to the scaffold in a time-dependent manner.  相似文献   

3.
The turnover of newly synthesized cytochromes P-450scc and P-45011 beta, and adrenodoxin was investigated in bovine adrenocortical cells in primary monolayer cultures. Cells were pulse-radiolabeled with [35S]methionine, and specific newly synthesized enzymes were immunoisolated at various times following labeling and quantitated. Adrenocorticotropin (ACTH) treatment did not alter the average turnover rate of total cellular proteins or that of total mitochondrial proteins. The half-life of total cellular proteins of control and ACTH-treated cells was determined to be 20.5 and 23 h, respectively. The half-life of mitochondrial proteins of control and ACTH-treated cells was determined to be 42.5 and 44 h, respectively. The turnover rate of newly synthesized cytochrome P-450scc was approximately the same as total mitochondrial protein (t1/2 = 38 h), and was unchanged by ACTH treatment (t1/2 = 42 h). ACTH treatment did not greatly alter the turnover rate of adrenodoxin. The half-life of adrenodoxin from control and ACTH-treated cells was determined to be 20 and 17 h, respectively. However, ACTH treatment appeared to increase the half-life of cytochrome P-45011 beta from 16 h in control cells to 24 h in treated cells. The differential rate of turnover of mitochondrial proteins studied here supports the contention that mitochondria are subject to heterogeneous degradation. It appears that chronic treatment of bovine adrenocortical cells in culture with ACTH leads to increased steroidogenic capacity, primarily as a result of increased synthesis of steroidogenic enzymes, although, as shown for cytochrome P-45011 beta, ACTH action might also increase steroidogenic capacity by increasing the half-life of this steroid hydroxylase.  相似文献   

4.
The complete amino acid sequences of subunits VII and VIIa from yeast cytochrome c oxidase are reported. Subunits VII and VIIa are 57 residues (Mr = 6603) and 54 residues (Mr = 6303) in length, respectively. Both polypeptides are amphiphilic, have an internal hydrophobic section and hydrophilic NH2 and COOH termini, and terminate at their COOH termini with a basic amino acid. This structural motif is similar to that possessed by subunit VIII of yeast cytochrome c oxidase. All three polypeptides have hydrophobic sections which are long enough to span the inner membrane; all three polypeptides lack methionine at their NH2 termini; and all three polypeptides have COOH termini which could result from proteolysis by a protease with trypsin or cathepsin B-like activity. These observations raise the interesting possibility that subunits VII, VIIa, and VIII are transmembranous polypeptides which are processed at both their NH2 and COOH termini during their biogenesis.  相似文献   

5.
The half-lives of turnover of plasma membrane proteins in rat hepatoma tissue, culture cells, and in primary cultures of rat hepatocytes have been analyzed after resolution by two-dimensional gel electrophoresis. Cell membranes were externally labeled via iodination catalyzed by lactoperoxidase and glucose oxidase. A bimodal pattern of turnover was found for the externally oriented plasma membrane proteins of rat hepatoma cells. Three glycoproteins analyzed in these cells had an average t 1/2 of 22 h while eight proteins which did not bind to concanavalin A had an average t 1/2 of 80 h. In contrast, more heterogeneous rates of turnover were found for the externally oriented plasma membrane proteins of primary cultures of hepatocytes. Most, if not all, of the membrane proteins accessible to iodination in these cells were glycoproteins. Among the glycoproteins resolved by two-dimensional polyacrylamide electrophoresis, the receptors for asialoglycoproteins had the shortest half-lives (18 h). Other glycoproteins, mostly with higher molecular weights and different isoelectric points, showed a spectrum of half-lives ranging from 16 to 99 h. The turnover rates of membrane proteins of primary cultures of rat hepatocytes were also determined with [3H]- and [35S]methionine labeling of cells. Heterogeneous rates of turnover again were found among the labeled glycoproteins and nonglycoproteins. Among the 10 glycoproteins individually analyzed, the half-lives range from 17 to 67 h. Among the 21 proteins which do not bind to concanavalin A, the half-lives range from 18 h to more than 100 h. Three proteins analyzed showed an apparent biphasic pattern of turnover, having a fast phase with a half-life of 4-6 h and a slow phase with a half-life of 15-29 h. Several nonglycoproteins, including clathrin and actin associated with membrane vesicles had extremely long half-lives. The more than 5-fold difference in the half-life between clathrin and the receptors for asialoglycoproteins, which coexist in coated pits indicates that intrinsic proteins of the coated pits turn over at a different rate than peripheral components.  相似文献   

6.
The biosynthesis of mammalian mitochondrial cytochromes was explored in primary hepatocyte cultures. When these were pulsed with [35S]methionine in the presence of cycloheximide, eight discrete mitochondrial polypeptides were detected by fluorography after their resolution under denaturing conditions by polyacrylamide gel electrophoresis. Since the pulse labeling of the polypeptides was sensitive to chloramphenicol, an inhibitor of mitochondrial translation, they must be translated on mitochondrial ribosomes. Three were identified as the largest subunits of cytochrome oxidase by their immunoprecipitation with antibody directed against purified rat liver cytochrome oxidase. Another (Mr = 28,000) was identified as one of eight subunits of purified rat liver cytochrome b-c1 complex by its immunoprecipitation with antibody directed against bovine heart b-c1 complex. Since cytochrome b apoprotein is the only product of the mitochondrial genome in the yeast cytochrome b-c1 complex (Krieke, J., Bechmann, H., van Hemert, F. J., Schweyan, R. J., Boer, P. H., Kaudewitz, F., and Groot, G. S. P. (1979) Eur. J. Bio-chem. 101, 607-617), the results strongly suggest that the Mr = 28,000 subunit of liver b-c1 complex is cytochrome b apoprotein. Thus the contribution of the mitochondrial translation system to the cytochrome complexes in liver is identical to that of yeast and Neurospora, and there appears to be no deletion or transfer to the nuclear genome of structural genes for mitochondrially synthesized cytochromes during eukaryotic evolution.  相似文献   

7.
The effects of thyroid hormone on the accumulation of inner membrane polypeptides in rat liver mitochondria have been investigated using Western blot analysis. Respiration and mitochondrial protein synthesis were also measured. Levels of the subunits of cytochrome oxidase, the cytochrome bc1 complex, and the beta-subunit of F1-ATPase increase relatively late, requiring 3-6 days of treatment and high doses of hormone. In contrast, respiration increases under conditions in which no significant accumulation of individual subunits is observed. Our results indicate that increased oxidative capacity of mitochondria can be divided into an early response which probably involves metabolic regulation of mitochondrial respiration by hormone and a later response which is due to elevated mitochondrial protein synthesis and the accumulation of polypeptides of the respiratory chain.  相似文献   

8.
The biogenesis of multimeric protein complexes of the inner mitochondrial membrane in yeast requires a number of nuclear-coded ancillary proteins. One of these, Pet100p, is required for cytochrome c oxidase. Previous studies have shown that Pet100p is not required for the synthesis, processing, or targeting of cytochrome c oxidase subunits to the mitochondrion nor for heme A biosynthesis. Here, we report that Pet100p does not affect the localization of cytochrome c oxidase subunit polypeptides to the inner mitochondrial membrane but instead functions after they have arrived at the inner membrane. We have also localized Pet100p to the inner mitochondrial membrane in wild type cells, where it is present in a subassembly (Complex A) with cytochrome c oxidase subunits VII, VIIa, and VIII. Pet100p does not interact with the same subunits after they have been assembled into the holoenzyme. In addition, we have identified two subassemblies that are present in pet100 null mutant cells: one subassembly (Complex A') is composed of subunits VII, VIIa, and VIII but not Pet100p, and another subassembly (Complex B) is composed of subunits Va and VI. Because pet100 null mutant cells lack assembled cytochrome c oxidase but accumulate Complexes A' and B it appears likely that these subassemblies of cytochrome c oxidase subunits are intermediates along an assembly pathway for holocytochrome c oxidase and that Pet100p functions in this pathway to facilitate the interaction(s) between Complex A' and other cytochrome c oxidase subassemblies and subunits.  相似文献   

9.
DNA-dependent RNA polymerase of thermoacidophilic archaebacteria   总被引:7,自引:0,他引:7  
Among 979 non-glycerol growers of the yeast Schizosaccharomyces pombe, 40 strains were found to be deficient in the mitochondrial ATPase activity. Three of them exhibited an alteration in either the alpha or beta subunits of the F1ATPase. The alpha subunit was not immunodetected in the A23/13 mutant. The beta subunit was not immuno-detected in the B59/1 mutant. The existence of these two mutants shows that the alpha and beta subunits can be present independently of each other in the inner mitochondrial membrane. The beta subunit of the mutant F25/28 had a slower electrophoretic mobility than that of the wild-type beta subunit. This phenotype indicates abnormal processing or specific modification of the beta subunit. All mutants showed reduced activities of the NADH-cytochrome c reductase and of the cytochrome oxidase and a decreased synthesis of cytochrome aa3 and cytochrome b. This pleiotropic phenotype appears to result from specific modifications in the mitochondrial protein synthesis. The mitochondrial synthesis of four polypeptides (three cytochrome oxidase and one cytochrome b subunits) was markedly decreased or absent while three new polypeptides (Mr = 54000, 20000 and 15000) were detected in all the mutants analysed. This observation suggests that a functional F1ATPase is necessary for the correct synthesis and/or assembly of the mitochondrially made components of the cytochrome oxidase and cytochrome b complexes.  相似文献   

10.
Antibody prepared against beef heart mitochondrial NADH dehydrogenase immunoprecipitated 26 polypeptides from detergent solubilized beef heart mitochondria. All 26 polypeptides co-migrated with those present in the dehydrogenase antigen when resolved side by side on sodium dodecyl sulfateurea polyacrylamide gels. From mixed rat liver-[35S]methionine pulsed hepatoma mitochondria the antibody immunoprecipitated 24 stained liver polypeptides and 19 radio-labelled hepatoma polypeptides. The translation of three of the labelled polypeptides was resistent to inhibition by cycloheximide, indicating these are translated on mitochondrial ribosomes. These same polypeptides, however, wre previously identified as cytochrome c oxidase subunits; and, apparently, non-specifically co-precipitate with dehydrogenase associated polypeptides. We conclude that there are no mitochondrially translated polypeptides specifically associated with NADH dehydrogenase.  相似文献   

11.
The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase (the enzymes which are located in the mitochondrial inner membrane and matrix respectively) were synthesized as a larger molecular mass than their mature subunits, when rat liver RNA was translated in vitro. These precursor polypeptides were also detected in vivo in ascites hepatoma cells (AH-130 cells). When the 35S-labeled precursor polypeptides were incubated with isolated rat liver mitochondria at 30 degrees C in the presence of an energy-generating system, these two precursors were converted to their mature size and the 35S-labeled mature-size polypeptides associated with mitochondria. Furthermore, these mature-size polypeptides were recovered from their own locations, the inner mitochondrial membrane and the matrix. The precursor of ornithine aminotransferase incubated with rat liver mitochondria at 0 degree C was specifically and tightly bound to the surface of the mitochondria even in the presence of an uncoupler of oxidative phosphorylation. This precursor, bound to the mitochondria, was imported into the matrix when the mitochondria were reisolated and incubated at 30 degrees C in the presence of an energy-generating system, suggesting that a specific receptor may be involved in the binding of the precursor. The processing enzyme for both precursor polypeptides seemed to be located in the mitochondrial matrix and was partially purified from the mitochondria. A metal-chelating agent strongly inhibited the processing enzyme and the inhibition was recovered by the addition of Mn2+ or Co2+.  相似文献   

12.
Effect of feeding rice diet with and without lysine and threonine supplementation on hepatic mitochondria and its inner and outer membrane proteins, enzymes and phospholipids has been studied. The exchange of phosphatidylcholine and phosphatidylethanolamine between microsomes and mitochondria has also been studied under these conditions. Deficient diet lead to significant decrease in proteins as well as activities of monoamine oxidase, succinate dehydrogenase, cytochrome a + a3 and cytochrome c in mitochondria and its inner and outer membranes. Feeding of the deficient diet also significantly reduced total phospholipids and PC in mitochondria and its outer mitochondrial membrane. In the inner mitochondrial membrane, only PE and cardiolipin were reduced. The incorporation (DPM/microgram PLP) of [methyl-3H]choline and [methyl-14C]methionine into PC of mitochondria and its outer membrane and that of 32Pi into PC and PE of outer mitochondrial membrane but only into PC of inner mitochondrial membrane were significantly reduced in the deficient group. The exchange rates of PC and PE between microsomes and mitochondria were reduced in the deficient group. Supplementation of the deficient diet with lysine and threonine profoundly improved the above biochemical lesions as compared to casein fed rats.  相似文献   

13.
Glycogen synthase was isolated from rat H4IIE hepatoma cells by the use of specific antibodies. Immunoprecipitates from cells grown in the presence of [35S]methionine contained two 35S-labeled polypeptides, designated GS1 and GS2, separable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling of both species was half-maximal after 3 h and remained constant up to 48 h. When cells were incubated with [32P]-phosphate, 32P was incorporated into both species with similar kinetics, half-maximal labeling occurring after 2-3 h. The steady-state ratio 32P/35S was significantly higher for the lower mobility GS2 polypeptide. Pulse-chase experiments showed that the two subunits followed similar kinetics with respect to 35S-labeling. However, the turnover of 32P on the GS2 subunit was significantly faster (t1/2 approximately 30 min) than that on the GS1 subunit (t1/2 approximately 2 h). We suggest that the two polypeptides represent different phosphorylation states of the glycogen synthase subunit and are rapidly interconverted.  相似文献   

14.
The accumulation of inner mitochondrial components of rat heart was studied 1 and 3 days after constriction of the ascending aorta of rats. By 1 day after aortic constriction, the activities of three mitochondrial respiratory enzymes/mg of cardiac homogenate protein were increased; after 3 days, specific activities had levelled off or decreased. Selective accumulation of inner mitochondrial membrane components 24h after aortic constriction was further indicated by increased left ventricular cytochrome c concentration (nmol/mg of protein). By 3 days after surgery, cytochrome c concentration was significantly diminished. Low-temperature spectroscopy of isolated mitochondria showed that the ratios of cytochromes c, b and a+a(3) remained unchanged after aortic constriction, suggesting that cytochrome c was a good indicator of the response of the other mitochondrial inner-membrane cytochromes as well. The effect of cardiac hypertrophy on the turnover of cytochrome c was also examined. Cytochrome c was labelled in its haem group with delta-amino[2,3-(3)H(2)]laevulinate 3 days before aortic constriction. By 1 day after surgery the total ventricular radioactivity in cytochrome c of aortic banded animals was significantly higher than in sham-operated controls, indicating a decreased degradation rate in the former during the first postoperative day. delta-Aminolaevulinate was shown to be a particularly suitable precursor for such turnover studies, since it results in rapid pulse-labelling of cytochrome c (peak activity in 90min), is rapidly removed from the precursor pool (t((1/2))=30min) and is not reutilized.  相似文献   

15.
The cytochrome bc1 complex of the yeast Saccharomyces cerevisiae is composed of 10 different subunits that are assembled as a symmetrical dimer in the inner mitochondrial membrane. Three of the subunits contain redox centers and participate in catalysis, whereas little is known about the function of the seven supernumerary subunits. To gain further insight into the function of the supernumerary subunits in the assembly process, we have examined the subunit composition of mitochondrial membranes isolated from yeast mutants in which the genes for supernumerary subunits and cytochrome b were deleted and from yeast mutants containing double deletions of supernumerary subunits. Deletion of any one of the genes encoding cytochrome b, subunit 7 or subunit 8 caused the loss of the other two subunits. This is consistent with the crystal structure of the cytochrome bc1 complex that shows that these three subunits comprise its core, around which the remaining subunits are assembled. Absence of the cytochrome b/subunit 7/subunit 8 core led to the loss of subunit 6, whereas cytochrome c1, iron-sulfur protein, core protein 1, core protein 2 and subunit 9 were still assembled in the membrane, although in reduced amounts. Parallel changes in the amounts of core protein 1 and core protein 2 in the mitochondrial membranes of all of the deletion mutants suggest that these can be assembled as a subcomplex in the mitochondrial membrane, independent of the presence of any other subunits. Likewise, evidence of interactions between subunit 6, subunit 9 and cytochrome c1 suggests that a subcomplex between these two supernumerary subunits and the cytochrome might exist.  相似文献   

16.
Protein synthesis was investigated in isolated mitochondria under conditions which either inhibited electron transport or uncoupled oxidative phosphorylation. In a medium containing an exogenous source of ATP and oligomycin, an inhibitor of the ATP synthase complex, incorporation of [35S]methionine into proteins is stimulated in the presence of inhibitors of the electron transport chain; substituting uncouplers of oxidative phosphorylation for the latter leads, in contrast, to a decrease in the rate of incorporation of the labeled amino acid into mitochondrial translation products. Studies on the metabolic stability of mitochondrial translation products revealed that "mature" polypeptides made in isolated mitochondria are stable as indicated by the absence of degradation during a 50 min "chase" period. Under conditions which reduce or dissipate the membrane potential, 50-60% of the newly made polypeptides (pulse) are degraded within 50 min. The kinetics of the degradation process for individual mitochondrial gene products reveal that the largest proportion of polypeptides degraded to an acid-soluble form during the chase period are abnormal proteins, likely the result of premature chain termination. Emerging as a common denominator in these studies is a role for a transmembrane potential across the inner membrane in the production of mature "stable" mitochondrial gene products.  相似文献   

17.
J F Hare  E Ching  G Attardi 《Biochemistry》1980,19(10):2023-2030
Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1), the terminal oxidase of the respiratory chain in eucaryotic cells, has been purified from human placenta mitochondria. Seven polypeptides have been identified reproducibly by high-resolution electrophoresis of the enzyme complex through sodium dodecyl sulfate (Na-DodSO4)--urea polyacrylamide gels; these correspond closely in size to the subunits of beef heart cytochrome c oxidase. When HeLa cells, grown in suspension culture, were pulse-labeled with [35S]methionine in the presence of cycloheximide to inhibit cytoplasmic protein synthesis and chased with an excess of unlabeled methionine in the absence of the drug, the mitochondrially synthesized polypeptides were resolved into at least 17 components by NaDodSO4--urea polyacrylamide gel electrophoresis. After labeled HeLa mitochondria were mixed with human placenta mitochondria and the cytochrome c oxidase was isolated, three of the labeled components were found to copurify with the three largest subunits of the complex. We conclude that human cytochrome c oxidase contains seven subunits, the three largest of which are synthesized on mitochondrial ribosomes, while the other four are synthesized in the cytoplasm.  相似文献   

18.
Antibodies against synthetic peptides derived from the DNA sequence of human cytochrome c oxidase subunit II (COII) have been tested for their capacity to immunoprecipitate the whole enzyme complex. Antibodies against the COOH-terminal undecapeptide of COII (anti-COII-C), when incubated with a Triton X-100 mitochondrial lysate from HeLa cells pulse-labeled with [35S]methionine under conditions selective for mitochondrial protein synthesis and chased for 18 h in unlabeled medium, precipitated the pulse-labeled three largest subunits (mitochondrially synthesized) of cytochrome c oxidase in proportions close to equimolarity. Antibodies against the NH2-terminal decapeptide of COII (anti-COII-N), although equally reactive as the anti-COII-C antibodies with the sodium dodecyl sulfate-solubilized COII, did not precipitate any of the three labeled subunits from the Triton X-100 mitochondrial lysate. In other experiments, all the 13 subunits which have been identified in the mammalian cytochrome c oxidase were immunoprecipitated from a Triton X-100 mitochondrial lysate of cells long-term labeled with [35S]methionine by anti-COII-C antibodies, but not by anti-COII-N antibodies. By contrast, in immunoblots of total mitochondrial proteins dissociated with sodium dodecyl sulfate, the anti-COII-C antibodies reacted specifically only with COII. These results strongly suggest that, in the native cytochrome c oxidase complex, the epitope recognized by the anti-COII-C antibodies is in the COII subunit and that, therefore, in such complex, the COOH-terminal peptide of COII is exposed to antibodies, whereas the NH2-terminal peptide is not accessible.  相似文献   

19.
The mechanism of decline in the catalytic activity of intestinal lactase during neonatal maturation has not been defined, but a shift in the lactase subunit synthesis from an active 130-kDa subunit to an inactive 100-kDa species has now been noted in the adult rat (Quan, R., Santiago, N. A., Tsuboi, K. K., and Gray, G. M. (1990) J. Biol. Chem. 265, 15882-15888). The subunit structure, synthesis, intracellular assembly, and subsequent degradation of lactase from the brush-border surface membrane was examined in 15-day-old pre-weaned and 30-day-old post-weaned intact rats. Lactase was labeled intraintestinally with [35S]methionine, isolated from Triton-solubilized membranes with monospecific polyclonal anti-lactase, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The protein-stained gel revealed subunits of 225 and 130 kDa, the latter species predominating in both the pre- and post-weaned state. The distinct adult-type 100-kDa moiety was present in post-weaned animals while only a trace of a slightly larger (approximately 110 kDa) species was observed in pre-weaned animals. Quantitation of radioactivity in newly synthesized lactase revealed an increasing prominence of the 100-kDa species in post-weaned rats (130/100 incorporation ratio: pre-weaned 6.2; post-weaned 3.3). Accumulation of newly labeled lactase in brush-border membranes after intraperitoneal [35S]methionine labeling was similar in both groups at 3 h. Despite these comparable rates of lactase synthesis, assembly and insertion in the pre- and post-weaned state, subsequent removal of the 130-kDa unit was more rapid in post-weaned animals (t1/2 = 11 h; pre-weaned t1/2 = 37 h). In intact rats, the neonatal maturational decline in lactase catalytic activities involves both a shift to production of the inactive 100-kDa subunit and increased membrane surface degradation of the active 130-kDa subunit.  相似文献   

20.
The use of L-[35S]methionine (500-700 Ci/mmol (1 Ci = 37 GBq) for labelling the polypeptides of liver rough (R) and smooth (S)endoplasmic reticulum (ER) membrane fractions in vivo was studied. Adult mice were injected intraperitoneally with 400 muCi of the isotope and killed at various times (2'min to 24 h) thereafter. RER and SER fractions were prepared, stripped of ribosomes, and treated with Triton X-100 to remove intravesicular contents. Sufficient radioactivity was present in individual aliquots (75 microgram protein) of the ER membrane fractions to permit their analysis by fluorography after separation by electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. By 3 min, although the majority of the labelled components were of intravesicular origin, some 12 membrane polypeptides were labelled in the RER fraction (including one corresponding in migration to cytochrome P-450); some 6 of these latter polypeptides were labelled to a lesser degree in the SER membrane fraction at this time. By 5 min, the patterns of radioactive polypeptides of the RER and SER fractions (including both membrane and intravesicular components) were identical. By 7 min, some 28 labelled membrane polypeptides were detectable in the total microsomal membrane. Analysis of the 24-h samples revealed that all the membrane polypeptides seen by staining with Coomassie blue were visualised by fluorography. Other studies revealed the applicability of the approach used for producing highly labelled cell sap and serum proteins. The overall results demonstrate the suitability of L-[35S]methionine administered in vivo for producing mouse liver ER membrane polypeptides of relatively high radioactivity and are consistent with a rapid conversion of RER to SER by ribosome detachment or membrane flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号